K-THEORY OF A SPACE WITH COEFFICIENTS IN A (DISCRETE) RING

BY DAVID L. RECTOR1

Communicated by M. L. Curtis, January 27, 1971

In [2], [3], S. Gersten has introduced higher K-groups of a ring which satisfy properties analogous to those of a generalized homology theory in a suitably defined homotopy category of rings [1]. In this announcement we use Gersten's K-groups to define for a ring R a generalized cohomology theory K_R^* (), analogous to the Atiyah-Hirzebruch K-theory, on the category of finite simplicial sets so that $K_R^*(pt) = K_2^*R$, where K_2^*R are Gersten's stable K-groups of the ring R. If R is suitably restricted, in particular if it is commutative and regular, the theory K_R^* () will have products and Adams operations. One may also define, using the continuous theory in [6], a K-theory K_A^* () with coefficients in a Banach ring Λ . This theory coincides with the Atiyah-Hirzebruch theory for $\Lambda = R$, C, or H. We give here an outline of proofs. A full account will appear elsewhere.

1. **Definition of the theory.** We recall the definition of Gersten's theory as given in [5]. Let R be a ring (without unit). The functor $R \mapsto R[t]$ together with the natural transformations $R[t] \to R$ via " $t \to 1$ ", and $R[t] \to R[t, t']$ via $t \to tt'$ define a cotriple in the category of rings. If ER is the ideal R[t]t, then the restriction of those maps makes the functor $R \mapsto ER$ a cotriple. Associated to these cotriples are canonical simplicial rings R[T] and ER with

$$R[T]_n = R[t_0, \dots, t_n], \quad \overline{E}R_n = E^{n+1}R.$$

Let QR be the simplicial ring

$$QR = R[T]/\overline{E}R.$$

One has

$$K^{-i-1}R = \pi_i \text{ Gl } OR$$

where Gl denotes the general linear group functor. This K-theory of rings is stabilized as follows [3]. Let ΓR be the kernel of $R[t, t^{-1}] \rightarrow R$. Then there is a natural homomorphism

AMS 1970 subject classifications. Primary 55B15, 55B20, 13D15, 16A54, 18F25.

¹ The author was partially supported by NSF grant GP-20552 during the preparation of this work.

$$K^i R \xrightarrow{\beta} K^{i-1} \Gamma R, \qquad i \leq 0,$$

analogous to the Bott map, which is an isomorphism when R is K-regular.

Put

$$K_{\Sigma}^{i}R = \operatorname{inj \, lim} \, K^{i-n}\Gamma^{n}R, \qquad -\infty < i < \infty.$$

Then if $R \rightarrow S \rightarrow T$ is a Gl-fibration [2], there is a long exact sequence

$$\cdots \to K_{\Sigma}^{i}T \to K_{\Sigma}^{i}S \to K_{\Sigma}^{i}R \xrightarrow{\partial} K_{\Sigma}^{i+1} \to \cdots$$

Now to define a cohomology theory for simplicial sets, we will give a contravariant functor (; R) from simplicial sets to rings which

- (1) sends coproducts to products,
- (2) sends cofibrations to Gl-fibrations,
- (3) sends a point to R.

For X and Y simplicial sets, let $\Delta(X; Y)$ denote the set of all simplicial maps from X to Y. Put

$$(X; R) = \Delta(X; QR).$$

Then (X; R) is a ring and (pt; R) = R, since $QR_0 = R$.

DEFINITION 1.1. For X a finite simplicial set, $K_R^*(X) = K_\Sigma^*(X; R)$. The long exact sequence of a cofibration arises from

PROPOSITION 1.2. If $Y \rightarrow X \rightarrow X/Y$ is a cofibration of simplicial sets then

$$(X/Y;R) \rightarrow (X;R) \rightarrow (Y;R)$$

is a G1-fibration.

This proposition follows from the following properties of the functor $\Delta(\ ;\).$

LEMMA 1.3. If F is a functor which is left exact and preserves products then

$$\Delta(X; FY) = F\Delta(X; Y).$$

PROOF. Follows from the fact that *F* preserves equalizers.

LEMMA 1.4. If Y is a simplicial object in a category with a forgetful functor to sets and Y is contractible as a set complex then $\Delta(\ ;Y)$ is an exact functor.

To verify the homotopy axiom for the theory we must prove

PROPOSITION 1.5. If $X \rightarrow Y$ is a map of finite simplicial sets which induces an isomorphism $H_*(X; \mathbf{Z}) \rightarrow H_*(Y; \mathbf{Z})$, then $f^!: K_R^*(Y) \rightarrow K_R^*(X)$ is an isomorphism.

This proposition follows immediately from the fact that we have an analogue of the Atiyah-Hirzebruch spectral sequence defined intrinsically in the theory K_R^* as follows.

Let X^n be the *n*-skeleton of X. We have a tower of Gl-fibrations

$$\cdots \to (X^n; R) \to (X^{n-1}; R) \to \cdots \to (X^0; R).$$

The long exact K_{Σ}^* -theory sequences of these fibrations define a homology exact couple. The spectral sequence of that couple converges strongly to $K_R^*(X)$. One has $E_1^{p,q} = K_{\Sigma}^{p+q}(X^p/X^{p-1}; R)$. By a brute force calculation

LEMMA 1.6. $K_{\Sigma}^{p+q}(X^p/X^{p-1}; R) = \bigoplus_{\sigma} K_{\Sigma}^{p+q}R$, where the sum runs over all nondegenerate p-simplexes σ of X.

Standard diagram chases now establish

THEOREM 1.7. There is a natural spectral sequence $\{E_r\}$ converging to $K_R^*(X)$ with

$$E_2^{p,q} = H^p(X; K_{\Sigma}^q R).$$

Thus

Theorem 1.8. K_R^* () is a generalized cohomology theory on the category of finite simplicial sets.

In addition,

THEOREM 1.9. K_R^* () depends only on the ring homotopy type of R and if $R \rightarrow S \rightarrow T$ is a Gl-fibration of rings there is a natural exact triangle of theories

$$K_R^*() \longrightarrow K_S^*()$$

where δ has degree +1.

2. Products and Adams operations. Let R and T be rings, X and Y simplicial sets. We then have a pairing

$$(X; R) \otimes z (Y; T) \xrightarrow{\phi} (X \times Y; R \otimes T)$$

given by

$$\phi(\alpha \otimes \beta)(x, y) = \alpha(x) \otimes \beta(y).$$

Using the product structure in $K_{\Sigma}^{*}()$ [4] one has

THEOREM 2.1. There is a natural graded associative pairing

$$K_R^*(X) \otimes K_T^*(Y) \to K_{R\otimes T}^*(X \times Y).$$

If R is a commutative ring there is a natural graded commutative ring structure on $K_R^*(X)$ arising from the diagonal $\Delta: X \to X \times X$.

Now suppose that R is a K-regular ring [2]. From a truncated version of the spectral sequence of Theorem 1.7 one has

THEOREM 2.2. If R is K-regular,

$$K_{\Sigma}^{i}(X;R) = K^{i}(X;R)$$

for $i \leq 0$.

Now the theory K^i has Adams operations which are graded ring homomorphisms. Let K_R^- () be the nonpositive graded part of K_R^* (). Then

Theorem 2.3. If R is K-regular there are natural graded ring morphisms

$$\psi^k: K_R^-(X) \to K_R^-(X)$$

for $k \ge 0$. The ψ^k commute with the boundary of the long exact sequence of a cofibration when that makes sense.

REMARK 2.4. Using the continuous polynomials of [6] one may define a theory $K_{\Lambda}^*(\)$ for Λ a valuation ring. For $\Lambda=R$, C or H there is a natural equivalence

$$K_{\Lambda}^{*}() \rightarrow K\Lambda^{*}()$$

where $K\Lambda^*$ is the K-theory of Atiyah and Hirzebruch. It would be interesting to know the coefficient group $K_{\Lambda}^*(pt) = K^*\Lambda$ for $\Lambda = Q_p$ or Z_p .

Remark 2.5. The ring complex QR above may be replaced by the nicer ring complex ΔR where

$$\Delta R_n = R[t_0, \cdots, t_n]/t_0 + \cdots + t_n - 1,$$

and

$$d_{i}t_{j} = t_{j}, i > j,$$

$$= 0, i = j,$$

$$= t_{j-1}, i < j,$$

$$s_{i}t_{j} = t_{j}, i > j,$$

$$= t_{j} + t_{j+1}, i = j,$$

$$= t_{j+1}, i < j.$$

One may now redefine (X; R) as the ring of simplicial maps of X to ΔR . The same K-theory for X now arises in view of

PROPOSITION 2.6. π_i Gl $\Delta R = K^{-i-1}R$, $i \ge 0$.

This proposition is proved by showing that π_i Gl ΔR satisfies the axioms for $K^{-i-1}R$ [2].

REFERENCES

- 1. S. M. Gersten, Homotopy theory of rings (to appear).
- 2. —, On Mayer-Vietoris functors and algebraic K-theory, J. Algebra (to appear).
 - 3. ———, Stable K-theory of discrete rings (to appear).
 - 4. ——, Stable K-theory of discrete rings. II: Product and transfer (to appear).
- 5. S. M. Gersten and D. L. Rector, A relation between two simplicial algebraic K-theories, Bull. Amer. Math. Soc. 77 (1971), 397-399.
- 6. M. Karoubi and O. Villamayor, Foncteurs K^n en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416-A419. MR 40 #4944.

RICE UNIVERSITY, HOUSTON, TEXAS 77001