FUNCTION ALGEBRAS AND THE DE RHAM THEOREM IN PL

BY HOWARD OSBORN¹

Communicated by Jack Schwartz, September 29, 1970

- 0. Introduction. There is a classical contravariant functor on the category of smooth manifolds M which assigns to each M the algebra A of all smooth functions on M, and one uses this functor implicitly throughout differential topology. For example, the de Rham theorem extends the customary derivation $d:A \rightarrow \mathcal{E}(A)$ to a cochain complex $(\Lambda \mathcal{E}(A), d)$ whose homology is isomorphic to the real cohomology of M itself. In this paper we construct a corresponding contravariant functor on the category of piecewise linear manifolds M, which assigns to each M an algebra A of functions on M. We then define a derivation $d:A \to \mathcal{E}(A)$ and extend it to a cochain complex $(\Lambda \mathcal{E}(A), d)$ whose homology is isomorphic to the real cohomology of M; this is the de Rham theorem in PL. As an application we construct connections and curvature homomorphisms in terms of $(\Lambda \mathcal{E}(A), d)$, to which we apply a real version of the Chern-Weil theorem to compute real Pontrjagin classes of PL manifolds without using the Hirzebruch L-polynomials.
- 1. Smoothing homeomorphisms. A simplicial decomposition of R^n at 0 is any finite triangulation of R^n into open simplexes such that $0 \in R^n$ is the only 0-simplex. If α and β are any two such simplicial decompositions then we write $\alpha < \beta$ whenever β is a subdivision of α . For any α and β there is a simplicial decomposition γ with $\alpha < \gamma$ and $\beta < \gamma$, so that the simplicial decompositions of R^n at 0 form a directed set.

It is clear that a simplicial decomposition α is completely determined by its 1-simplexes ρ_1, \dots, ρ_N (for some N > n), each p-simplex of α containing precisely p 1-simplexes $\rho_{i_1}, \dots, \rho_{i_p}$ in its closure. If R^n is endowed with its usual euclidean norm then points on each 1-simplex ρ_i can be identified with their norms $x_i \in R^+$, and points in the open p-simplex determined by $\rho_{i_1}, \dots, \rho_{i_p}$ can be identified by the coordinates $(x_{i_1}, \dots, x_{i_p}) \in (R^+)^p$.

AMS 1970 subject classifications. Primary 57D20, 58A10; Secondary 57C99.

Key words and phrases. PL manifolds, differential forms, de Rham theorem, connections, curvature homomorphism, Chern-Weil theorem, Pontrjagin classes, Gauss-Bonnet theorem.

¹ Research supported by National Science Foundation Grant GP 13145.

Now define $\varphi: R^+ \to R^+$ by setting $\varphi(x) = \exp \frac{1}{2}(x-x^{-1})$, and observe that φ is a diffeomorphism with inverse φ^{-1} given by $\varphi^{-1}(y) = \ln y + (1+\ln^2 y)^{1/2}$. One can extend φ to a homeomorphism $\overline{\varphi}: \overline{R}^+ \to \overline{R}^+$ by setting $\overline{\varphi}(0) = 0$. Then there is a diffeomorphism Φ of each open p-simplex of α into itself given by $\Phi(x_{i_1}, \dots, x_{i_p}) = (\varphi(x_{i_1}), \dots, \varphi(x_{i_p}))$, and a homeomorphism of the closure into itself given by $\overline{\Phi}(x_{i_1}, \dots, x_{i_p}) = (\overline{\varphi}(x_{i_1}), \dots, \overline{\varphi}(x_{i_p}))$. Since $\overline{\varphi}(0) = 0$ it follows that the homeomorphisms $\overline{\Phi}$ agree on intersections of closures of simplexes in α , hence that the diffeomorphisms Φ in all dimensions induce a homeomorphism $R^n \to R^n$. In the following definition we replace the latter homeomorphism by its N-fold composition, where N is the number of 1-simplexes in α , and for convenience we let φ_N denote the N-fold composition of $\varphi: R^+ \to R^+$.

DEFINITION. For the simplicial decomposition α of \mathbb{R}^n at 0, with 1-simplexes ρ_1, \dots, ρ_N , the smoothing homeomorphism $\Phi_\alpha: \mathbb{R}^n \to \mathbb{R}^n$ is given by setting $\Phi_\alpha(0) = 0$ and $\Phi_\alpha(x_{i_1}, \dots, x_{i_p}) = (\varphi_N(x_{i_1}), \dots, \varphi_N(x_{i_p}))$ for points $(x_{i_1}, \dots, x_{i_p})$ of open p-simplexes in α with the 1-simplexes $\rho_{i_1}, \dots, \rho_{i_p}$ on their boundaries.

2. Smoothable function algebras. In this section we assign an algebra A of continuous functions $f: M \to \mathbb{R}^1$ to each PL manifold M. We begin by taking $M = \mathbb{R}^n$, for which we first define the algebra A_0 of germs of elements of A at $0 \in \mathbb{R}^n$.

LEMMA. If $f: \mathbb{R}^n \to \mathbb{R}^1$ is a piecewise linear function which is linear on each simplex of a simplicial decomposition α of \mathbb{R}^n at 0, then $f \circ \Phi_\alpha: \mathbb{R}^n \to \mathbb{R}^1$ is everywhere smooth.

The proof of the Lemma depends primarily on the following observation: if $f: \mathbb{R}^1 \to \mathbb{R}^1$ is any function which is smooth except at $0 \in \mathbb{R}^1$, and if the derivatives of f are bounded in a deleted neighborhood of 0, then $\lim_{x\to 0} (f \circ \varphi)^{(q)}(x) = 0$ for each q > 0. The details will appear in [6].

The conclusion of the Lemma holds for a very broad class of functions on \mathbb{R}^n , including many functions $f: \mathbb{R}^n \to \mathbb{R}^1$ for which the derivatives of $f \circ \Phi_{\alpha}$ satisfy no conditions other than smoothness. We let $\Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n))$ represent the algebra of those $f: \mathbb{R}^n \to \mathbb{R}^1$ such that $f \circ \Phi_{\alpha} \subset \mathbb{C}^{\infty}(\mathbb{R}^n)$. It will be shown in [6] that if $\beta > \alpha$ then the homeomorphism $\Phi_{\alpha}^{-1}\Phi_{\beta}: \mathbb{R}^n \to \mathbb{R}^n$ is smooth, although its jacobian vanishes on some subset of \mathbb{R}^n ; a fortiori $\Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n)) \subset \Phi_{\beta}^{-1}(C^{\infty}(\mathbb{R}^n))$.

DEFINITION. A continuous function $f: \mathbb{R}^n \to \mathbb{R}^1$ is smoothable at $0 \in \mathbb{R}^n$ if its germ at 0 is the germ of an element of $\Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n))$ for some simplicial decomposition α of \mathbb{R}^n . A continuous function $f: \mathbb{R}^n \to \mathbb{R}^1$ is smoothable at $P \in \mathbb{R}^n$ if $f \circ \tau$ is smoothable at 0 for the

translation $\tau: \mathbb{R}^n \to \mathbb{R}^n$ carrying 0 into P. For any open subset $V \subset \mathbb{R}^n$, a continuous function $f: V \to \mathbb{R}^1$ is smoothable on V if and only if it is smoothable at each $P \in V$.

Trivially, if $f: V \rightarrow \mathbb{R}^1$ is smooth then it is also smoothable, and the Lemma implies that if $f: V \rightarrow \mathbb{R}^1$ is piecewise linear then it is also smoothable.

The smoothable functions on any open $V \subset \mathbb{R}^n$ form an algebra. For if f and g are smoothable at 0 then the germs of f o Φ_{α} and g o Φ_{β} are smooth at 0 for some α and β , and so are the germs of f o Φ_{γ} and g o Φ_{γ} for any γ with $\gamma > \alpha$ and $\gamma > \beta$, so that (f-g) o Φ_{γ} and $f \cdot g$ o Φ_{γ} are smooth. In fact, the algebra A_0 of germs of smoothable functions at $0 \subset \mathbb{R}^n$ is precisely the direct limit $\lim_{\alpha} \Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n))_0$, where the subscript 0 indicates germs at 0, and where each $\Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n))_0 \to \Phi_{\beta}^{-1}(C^{\infty}(\mathbb{R}^n))_0$ is an inclusion homomorphism for $\alpha < \beta$.

We recall that one can define PL manifolds in terms of atlases and PL homeomorphisms of open sets in \mathbb{R}^n just as one defines smooth manifolds in terms of atlases and diffeomorphisms of open sets in \mathbb{R}^n . (See [8], for example.) Specifically, one covers a PL manifold M with open sets U_i for which there are homeomorphisms $\Psi_i \colon U_i \to V_i$ onto open sets $V_i \subset \mathbb{R}^n$, and the compositions $(\Psi_j \mid U_i \cap U_j)$ o $(\Psi_i \mid U_i \cap U_j)^{-1}$ are required to be PL homeomorphisms. It will be shown in [6] that the composition of a PL homeomorphism with a smoothable function is smoothable, so that the following definition makes sense:

DEFINITION. For any PL manifold M let $\{U_i\}$ be an atlas with homeomorphisms $\Psi_i: U_i \to V_i$ onto open sets $V_i \subset \mathbb{R}^n$ as above. Then the *smoothable function algebra* of M consists of those continuous $f: M \to \mathbb{R}^1$ such that $(f|U_i) \circ \Psi_i^{-1}$ is smoothable on V_i for each i.

3. Differential forms in PL. The usual derivation $d: C^{\infty}(\mathbb{R}^n) \to \mathcal{E}(C^{\infty}(\mathbb{R}^n))$ is given by

$$df = \frac{\partial f}{\partial x^1} dx^1 + \cdots + \frac{\partial f}{\partial x^n} dx^n,$$

and it can be described in terms of corresponding derivations of the algebras $C^{\infty}(\mathbb{R}^n)_P$ of germs of $C^{\infty}(\mathbb{R}^n)$ at each $P \in \mathbb{R}^n$. This is a general phenomenon about derivations of arbitrary function algebras A: any derivation $d:A \to E$ may be regarded as a section of a sheaf of derivations of the sheaf A of germs A_P of A at points P of the maximal spectrum of A into a sheaf of modules over A. (See [5], for example.) We consider only sections over the subset M of the maximal spectrum when A is the smoothable function algebra of M.

Any homomorphism $C^{\infty}(\mathbb{R}^n)_0 \to C^{\infty}(\mathbb{R}^n)_0$ of the germs of smooth

functions gives rise to a $C^{\infty}(\mathbb{R}^n)_0$ -module homomorphism $\mathcal{E}(C^{\infty}(\mathbb{R}^n)_0) \to \mathcal{E}(C^{\infty}(\mathbb{R}^n)_0)$ which commutes with d. In particular if α and β are simplicial decompositions of \mathbb{R}^n at 0 with $\alpha < \beta$ then $\Phi_{\alpha}^{-1} \Phi_{\beta} : \mathbb{R}^n \to \mathbb{R}^n$ is a smooth map which induces a homomorphism $C^{\infty}(\mathbb{R}^n)_0 \to C^{\infty}(\mathbb{R}^n)_0$. For convenience we rewrite the resulting commutative diagram

$$C^{\infty}(R^{n})_{0} \rightarrow C^{\infty}(R^{n})_{0} \qquad \Phi_{\alpha}^{-1}(C^{\infty}(R^{n})_{0}) \rightarrow \Phi_{\beta}^{-1}(C^{\infty}(R^{n})_{0})$$

$$d \downarrow \qquad \downarrow d \qquad \text{in the form} \qquad d_{\alpha} \downarrow \qquad \qquad \downarrow d_{\beta}$$

$$\mathcal{E}(C^{\infty}(R^{n})_{0}) \rightarrow \mathcal{E}(C^{\infty}(R^{n})_{0}) \qquad \mathcal{E}_{\alpha}(A_{0}) \rightarrow \mathcal{E}_{\beta}(A_{0})$$

to obtain a derivation $d_0: A_0 \rightarrow \mathcal{E}(A_0)$ of the form

$$\lim_{\alpha} d_{\alpha} \colon \lim_{\alpha} \Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^{n})_{0}) \to \lim_{\alpha} \mathcal{E}_{\alpha}(A_{0}).$$

Replacing $0 \in \mathbb{R}^n$ by arbitrary $P \in \mathbb{R}^n$ we then induce a derivation $d:A \to \mathcal{E}(A)$ of the smoothable function algebra A on \mathbb{R}^n . The method of §2 then provides a derivation $d:A \to \mathcal{E}(A)$ of the smoothable function algebra A on any PL manifold M.

4. The de Rham theorem in PL. Since exterior products commute with direct limit, and since the (acyclic) cochain complex $(\Lambda \mathcal{E}(C^{\infty}(\mathbb{R}^n)_0), d)$ is classically defined for the algebra $C^{\infty}(\mathbb{R}^n)_0$ it follows that one can form the exterior algebra $\Lambda \mathcal{E}(A)$ and the cochain complex $(\Lambda \mathcal{E}(A), d)$ for any algebra A of smoothable functions.

THEOREM. If A is the smoothable function algebra on a PL manifold M, then the homology of $(\Lambda \mathcal{E}(A), d)$ is isomorphic to the real cohomology of M.

PROOF. It will suffice to establish the PL analog of the Poincaré lemma: the usual sheaf-theoretic argument then applies to the PL case as well as the smooth case. (See [3], for example, which quotes the Poincaré lemma but otherwise invokes no properties of smooth function algebras not also shared by smoothable function algebras; smoothable partitions of unity present no problem.) However, the classical Poincaré lemma states that $(\Lambda \mathcal{E}(C^{\infty}(\mathbb{R}^n)_0), d)$ is acyclic, and we shall use this result to obtain the analogous result that $(\Lambda \mathcal{E}(A_0), d)$ is acyclic for the algebra $A_0 = \lim_{\alpha} \Phi_{\alpha}^{-1}(C^{\infty}(\mathbb{R}^n)_0)$ of germs of smoothable functions at $0 \in \mathbb{R}^n$. If

$$\theta = \sum_{q} f_0^q df_1^q \wedge \cdots \wedge df_p^q \in \Lambda^p \mathcal{E}(A_0) \quad \text{for } f_j^i \in A_0$$

then since A_0 is a direct limit there is a simplicial decomposition α of

 R^n at 0 for which each $f_j^t \circ \Phi_{\alpha}$ is smooth. If in addition $d\theta = 0$ then $d_{\alpha}\theta = 0$; that is,

$$d(\theta\Phi_{\alpha}) = d \sum_{q} g_0^q dg_1^q \wedge \cdot \cdot \cdot \wedge dg_p^q = 0 \in \Lambda^{p+1} \mathcal{E}(C^{\infty}(\mathbf{R}^n)_0),$$

where $g_j^i = f_j^i$ o Φ_{α} . The classical Poincaré lemma then provides

$$\psi = \sum_{r} h_0^r dh_1^r \wedge \cdots \wedge dh_{p-1}^r \in \Lambda^{p-1} \mathcal{E}(C^{\infty}(\mathbb{R}^n)_0) \quad \text{with } d\psi = \theta \Phi_{\alpha},$$

where $h_j^i \in C^{\infty}(\mathbb{R}^n)_0$. It follows for $k_j^i = h_j^i \circ \Phi_{\alpha}^{-1} \in A_0$ and $\psi \Phi_{\alpha}^{-1} = \sum_r k_0^r dk_1^r \wedge \cdots \wedge dk_{p-1}^r \in \Lambda^{p-1} \mathcal{E}(A)$ that $d(\psi \Phi_{\alpha}^{-1}) = \theta$. This completes the Poincaré lemma in PL, hence the de Rham theorem in PL.

5. Pontrjagin classes in PL. Let A be the smoothable function algebra of a PL manifold M, and let \mathfrak{F} be a graded left $\Lambda \mathcal{E}(A)$ -module. Then \mathfrak{F} is also a right $\Lambda \mathcal{E}(A)$ -module with respect to the product $\Phi \theta = (-1)^{p(q+1)}\theta \Phi$ for $\Phi \in \mathfrak{F}^{(p)}$ and $\theta \in \Lambda^q \mathcal{E}(A)$, and one can form the tensor algebra $\bigotimes_{\Lambda \mathcal{E}(A)} \mathfrak{F}$. Let $\mathfrak{G} \subset \bigotimes_{\Lambda \mathcal{E}(A)} \mathfrak{F}$ be the two-sided ideal generated by elements $\Phi \otimes \Psi + (-1)^{(p+1)(q+1)}\Psi \otimes \Phi$ for $\Phi \in \mathfrak{F}^{(p)}$ and $\Psi \in \mathfrak{F}^{(q)}$, and let $\Lambda_{\Lambda \mathcal{E}(A)} \mathfrak{F}$ be the quotient of $\bigotimes_{\Lambda \mathcal{E}(A)} \mathfrak{F}/\mathfrak{G}$. For example, if $\mathfrak{F} = \Lambda \mathcal{E}(A) \otimes \mathcal{E}(A)$ then $\Lambda_{\Lambda \mathcal{E}(A)} \mathfrak{F} = \Lambda \mathcal{E}(A) \otimes \Lambda \mathcal{E}(A)$. If \mathfrak{F} is locally a direct limit of free $\Lambda \mathcal{E}(C^{\infty}(\mathbb{R}^n)_P)$ -modules as in the preceding example, then for any two-sided $\Lambda \mathcal{E}(A)$ -module homomorphism $K : \mathfrak{F} \to \mathfrak{F}$ one can define det $K \in \Lambda \mathcal{E}(A)$; in this case \mathfrak{F} admits determinants.

A connection in a left $\Lambda \mathcal{E}(A)$ -module \mathfrak{F} is any real linear map $D: \mathfrak{F} \to \mathfrak{F}$ of degree +1 such that $D\theta \Phi = d\theta \cdot \Phi + (-1)^p \theta \cdot D\Phi$ for $\theta \in \Lambda^p \mathcal{E}(A)$. The curvature K of D is the composition $D \circ D$, trivially $\Lambda \mathcal{E}(A)$ -linear on each side. Here is a very general real Chern-Weil theorem, whose proof will appear in [6]:

PROPOSITION. If \mathfrak{F} admits determinants then $\det(I+K/2\pi)$ is closed for any connection D, and the de Rham cohomology class $[\det(I+K/2\pi)]$ is an element of $H^{4*}(M)$ which is independent of D.

We have already observed that $\Lambda \mathcal{E}(A) \otimes \mathcal{E}(A)$ admits determinants.

LEMMA. $\Lambda \mathcal{E}(A) \otimes \mathcal{E}(A)$ has at least one connection.

Now recall from [4] or [7] that the total rational (or real) Pontrjagin class p(M) of a PL manifold M is constructed via the Hirzebruch L-polynomials in such a way that if M happens to carry a smooth structure then p(M) is the Pontrjagin class of the tangent bundle $\tau(M)$. The following construction avoids the L-polynomials; its proof will appear in [6].

THEOREM. Let A be the smoothable function algebra of a PL manifold M and let \mathfrak{F} be the left $\Lambda \mathfrak{E}(A)$ -module $\Lambda \mathfrak{E}(A) \otimes \mathfrak{E}(A)$; then $[\det(I+K/2\pi)] \in H^{4*}(M)$ is the Pontrjagin class of M.

We remark that one can probably establish a PL version of the Gauss-Bonnet theorem within the framework of the present paper, which would more closely parallel the classical formula of [2] than the polyhedral results of [1].

REFERENCES

- 1. T. Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245-256. MR 37 #921.
- 2. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747-752. MR 6, 106.
- 3. F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966. MR 34 #2573.
- 4. J. Milnor, Lectures on characteristic classes, Princeton University, Princeton, N. J., 1958.
- 5. H. Osborn, *Modules of differentials*, I. Math. Ann. 170 (1967), 221-244. MR 35 #4839.
 - 6. —, Differential geometry in PL (in preparation).
- 7. R. Thom, Les classes caractéristiques de Pontrjagin des variétées triangulées, Sympos. Internacional de Topología Algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 54-67. MR 21 #866.
- 8. E. C. Zeeman, *Polyhedral n-manifolds*. I. *Foundations*, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 57-64. MR 2# #1595.

University of Illinois, Urbana, Illinois 61801