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1. Problem and its background. Consider a C1 differential 
P(z)dxdy (z = x+iy) on an open Riemann surface R with P(z)*t0. 
We denote by PX(R) the set of C2 solutions on R of the elliptic equa­
tion Au=Pu, or more precisely, of d*du(z)—u(z)P(z)dxdy, with a 
certain property X. For P = 0 we use the traditional notation HX 
instead of OX. Let Opx be the set of pairs (R} P) such that PX(R) 
reduces to constants. Instead of (i£, P)(E.Opx we simply write R&OPX 

if P is well understood. As for X we let B stand for boundedness, D 
for the finiteness of the Dirichlet integral DR(U) ~JR du/\*du, and E 
for the finiteness of the energy integral ER(U) =DR(U) +/R PU2 dx dy; 
we also consider combinations of these properties. I t is known that 

(1) OG C OPB Ç OPD C OPBD C OPE = OPBB. 

Here OQ is the class of pairs (R, P) such that there exists no harmonic 
Green's function on R. 

This type of classification problem was initiated by Ozawa [4] in 
1952. I t first came as a surprise when Myrberg [2] proved in 1954 the 
unrestricted existence of the Green's function for the equation 
Au = Pu (Pfz^O) for every R. This also eliminated the need of con­
sidering the nonexistence of nonnegative solutions in the case P ^ 0. 
Following Myrberg's discovery, work in this direction largely pursued 
aspects which were different in nature from those in the harmonic 
case. Typically classes PD and OPD were first considered by Royden 
[6] in 1959. Since the energy integral E(u) for Au = Pu plays the 
same role as the Dirichlet integral D(u) for the harmonic case, it is 
natural that PE and OPE share properties of HD and OHD. In this 
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sense the study of PD and OPD requires an entirely new technique. 
The author [3] showed in 1961 that every uÇzPD can be decomposed 
into u = ui — U2 where Ui^O and UiÇzPD (i = l, 2). Therefore the study 
of PD can be viewed as that of Dirichlet finite subharmonic functions; 
this is important from the viewpoint of classical potential theory 
proper. 

During the intervening decade rather numerous investigations 
have been published on this subject, but to the author's knowledge, 
no explicit further contributions to the theory of classes PD and OPD 
has been made. One of the central problems, as the author sees it, is 
to determine whether the inclusion OPDCOPBD is strict or not. In the 
harmonic case and of course in the case of PE, we have the Virtanen 
identity OHD = OHBD. 

The object of this note is to announce that we do have the same 
conclusion OPD = OPBD despite the fact that PD is quite different in 
nature from HD. 

In passing, we remark that the same is also true if R is replaced 
by a C00 Riemannian manifold with a C00 metric tensor gu of dimension 
w ^ 2 . The proof for the case of Riemann surfaces obviously repro­
duces verbatim. The result is true even for C1 manifolds with locally 
bounded measurable metric tensors ga and functions P. The proof is 
again essentially the same as for Riemann surfaces but technically 
the reasoning is more delicate. 

2. Main result. Virtanen's proof [8] for OHD = OHBD consists in 
showing the boundedness of the reproducing kernel for HD viewed 
as a Hubert space. I t was, essentially, Royden [5] who pointed out 
that the class HD is a vector lattice and that therefore HBD is dense 
in HD ; this in turn gives OHD = OHBD- Our result is rather of the latter 
nature. 

THEOREM. For any u in PD(R) there exists a sequence {un} 
(n = lt 2, • • • ) in PBD(R) such that sup#|^n| = min(w, supu|w|) , 
u = limn un uniformly on each compact set of R, and limn Dn(u — un) = 0. 
If moreover u is nonnegative, then {un} can be chosen nondecreasing. 

From this the Virtanen-type identity 

(2) OPD = OPBD 

immediately follows. We can also show that PD(R) is a vector lattice. 
However neither the Theorem nor (2) is a consequence of this fact 
since the constant 1 need not be in PD. 

The situation can be fully understood only by using the Royden 
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compactification R* of R (see e.g. [7]). We denote by A=A(R) the 
harmonic boundary of R, that is, the set of regular points of V 
= R*—R with respect to the harmonic Dirichlet problem. A point z* 
in A will be called a P-energy nondensity point if there exists an open 
neighborhood Z7* of 3* in R* such that 

(3) I Gu(z, w)P(z)P(w) dv(z) dv(w) < 00. 
Juxu 

Here U= U*r^R, Gu is the harmonic Green's function on U, and 
dv(z)=dx dy (z = x+iy). The set Ap of P-energy nondensity points 
is open in A. Since the functions in PD are continuously extendable 
to R* in the extended sense, we may consider PZMunctions con­
tinuous on R*. We can show that PZ>|A—Ap = {o}. Instead of de­
scribing the entire picture of PD(Ap)—{u\Ap; UÇZPD] we only 
mention the following relation, which gives the essence of our 
theorem : 

(4) PD(Ap) D {u JAP; w £ #£Z>(£),Supp («) C AP}. 

In addition to this geometric tool we need an analytic one, the 
integral operator PQ defined by 

Tw = -(27T)-1 f Go(-, z)<p(z)P(z) dv(z). 

Here 12 is an open subset of R with a smooth relative boundary 30 
which may be empty, i.e. ft = P . For every u in PD(Q) we have 

(5) u = TQU + TQU, DQ(U) = DQ(VQU) + Dü(Tüu) 

where TTQU is the harmonic projection of u (cf. [7]). Moreover 

(6) DQ(TQU) = (27T)-1 I GQ(Z, W)U(Z)U(W)P(Z)P(W) dv(z) dv(w), 

with all integrals understood in the sense of Lebesgue. These relations 
are easy consequences of the Stokes formula, a standard exhausting 
method, and the fact that a function u in PD is a difference of two 
nonnegative PD-functions (cf. [3]). We also have 

(7) TQu I (dQ) U ( S H A ) = 0. 

3. Sketch of the proof. We present an outline of the proof only for 
0pD = 0pBD, since this identity gives the essense of our results. We 
may assume P ^ O . Suppose there is a nonconstant u in PD(R). By 
(6) it can be seen that there exists a point z* in A belonging to Ap. 
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Let U be the corresponding open set in (3). We may modify U to 
have a smooth dU. Choose an h in HBD(U) such that h\dU = 0, 
0 ^ / z ^ l on Uy and A(s*) = l. Again by the standard exhausting 
method, we see that the integral equation of the Fredholm type 

(ƒ - Tu)u = h 

has a unique solution u on U which is in PD(U), with I the identity 
operator. Here the condition (3) is essential, and (6) is also employed. 
We deduce from (7) t h a t ^ | d & = 0, «(s*) = l, and O^u^h^l on 77. 
If we extend u to R by setting u = 0 on R—Uj then u is a Dirichlet 
finite subsolution of Au = Pu. Therefore we can construct a z> in 
PBD(R) such that w^v^X on JR and a fortiori R^OPBD. Here we 
have again used the exhausting method and the following entirely 
obvious, once observed, but useful fact (cf. [3]): 

Weak Dirichlet principle. Let Ü be a regular subregion of R and 5v 
the class of Dirichlet finite subsolutions v^O of Au —Pu on Ü with 
continuous boundary values <p at d!2. Then the variational problem 
minv e^ DQ(V) has a unique solution u which is in g*>nP.BZ) (Q). 

4. Additional remarks. From the proof one sees at once that in the 
definition of a P-energy nondensity point the function Gu may be re­
placed by GR. Moreover, R^OPD if and only if there exists a subregion 
U of R with a smooth dU such that U^SOHD and U satisfies (2) (cf. 
[7] for SOHD)- This may be viewed as a counterpart of the Bader-
Parreau-Mori two domain criterion for an R not in OHD (one domain 
criterion!). Of course the above statement is a restatement of the 
fact that RELOPD if and only if AP = 0. 

The revised string of inclusion relations (1) now reads: 

(8) O G Ç Ops Ç OpD = OpBD C OpE = Op BE» 

The only important open problem in this context is to prove or dis­
prove the strictness of the inclusion OPDCZOPE. At this point we must 
quote the recent important contributions mainly to the class PE by 
Glasner and Katz [ l ] , who introduced the notion (not the term) of 
a P-nondensity point for points s* in A characterized by 

(9) f P(z) dv(z) < oo 
J XJ 

instead of (3). The set Ap of such points relates to OPE in the following 
fashion: R G OPE if and only if Ap = 0. Clearly 

(10) Ap C AF. 
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Therefore the problem may be rephrased as follows: Does Ap = 0 
imply Ap = 0 or not? 

REFERENCES 

1. M. Glasner and R. Katz, On the behavior of solutions of Au —Pu at the Roy den 
boundary,]. Analyse Math. 22 (1969), 345-354. 

2. L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung Au 
= c{P) 'U auf Riemannschen Flachen, Ann. Acad. Sci. Fenn. Ser AI Math.-Phys. No. 
170 (1954). M R 16, 34. 

3. M. Nakai, The space of Dirichlet-finite solutions of the equation Au —Pu on a 
Riemann surface, Nagoya Math. J. 18 (1961), 111-131. M R 23 #A1027. 

4. M. Ozawa, Classification of Riemann surfaces, Kôdai Math. Sem. Rep. 1952,63-
76. M R 14, 462. 

5. H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. 
Math. Soc. 73 (1952), 40-94. M R 14, 167. 

6. , The equation Au —Pu, and the classification of open Riemann surfaces, 
Ann. Acad. Sci. Fenn. Ser AI No. 271 (1959). M R 22 #12215. 

7. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundleh-
ren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 
1970. 

8. K. I. Virtanen, Über die Existenz von beschrankten harmonischen Funktionen auf 
offenen Riemannschen Flachen, Ann. Acad. Sci. Fenn. Ser. AI Math.-Phys. No. 75 
(1950). M R 12, 403. 

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720 

ADDED IN PROOF. We found OPD^OPE (M. Nakai, A remark on 
classification of Riemann surfaces with respect to Au=Pu, Bull. Amer. 
Math. Soc. 77 (1971), (to appear)). 


