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1. Introduction. In this note we prove that if B is the unit ball of 
a complex Hubert space then B and BXB are holomorphically 
inequivalent. This answers a question of Burghelea. We also announce 
some results on the automorphism groups of bounded domains in 
a Hilbert space. 

2. The ball and the bi-ball. Let H be a complex Hilbert space. Let 
B={zEH\ | | * | | < l } . Here || • • • || is the Hilbert norm, and we 
denote by ( , ) the inner product on H. 

THEOREM 2.1. B and BXB are holomorphically inequivalent. (That 
is, there is no diffeomorphismf:B—>B XB so that df(z) is complex linear 
for each zEB.) 

PROOF. Suppose that f:B—>BXB is a holomorphic equivalence. 
We derive a contradiction. We first assert that we may assume that 
/(0) = (0, 0). Indeed, suppose that ƒ(*) = ((), 0), zEB. Define for 
wEB, w = wi+\z, (wi, s) = 0, 

. . ( i-iwh^wi + (x + i)« 
h(W) = jT-Tj • 

A||*| |*+l 
I t is not hard to check that h:B—>B is a holomorphic self-equivalence 
and A(0) = s . Replace/by ƒ o h. Then/(O) = (0, 0). 

Let zEB. Then 
OO 

(1) f(\z) = X) (X*/*0 dkf(0)zk for | X | ^ 1 
fc=i 

and the convergence is uniform on |X| ^ 1 . (Here dkf(Q) is the £th 
derivative of/, zk is the fe-tuple (s, • • • , z).) 

Set 

1 r2T 

G(z) = — I tr»f(e*z) dB. 
2w J o 
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Since G(z) is a limit of convex combinations of elements of BXB 
bounded away from the boundary of BXB, G(z)E;BXB for zÇîzB. 
Thus, by (1), df(0)BCBXB. Similarly, setting r = djf(0), we have 
T~1(BXB)(ZB. Hence T is a continuous linear bijection of H with 
HXH so that T:B—>B XB is a bijection. Let zÇEH be a unit vector. 
Then (z, 0) is in the boundary of BXB. Clearly T"~l(z, 0) —v is in the 
boundary of B. Hence ||z>||=l. Let wÇ^B then (z, 0 ) = i ( s , w) 
+1(2, - w ) , (s, w), (2. - w ) G ( B X J S ) " . Hence if »i = 2 "̂1(«» «0, 
z;2=r~1(2, — w) then Vi, Î I J G B and v = %Vi+%v2. This is the desired 
contradiction. Q.E.D. 

3. Automorphism groups of bounded domains in Hilbert space. 
In this section we announce several of the results of [ l ] . Let H be a 
complex Hilbert space. Let L(Cn, H) be the space of all complex 
linear maps from Cw to H. Then L(CW, H) is a Hilbert space relative to 
the inner product (Z | W) = tr W*Z. (Here we give Cn the standard 
Hilbert space structure; adjoints are denoted by an upper asterisk.) 
Let Dn(H) be the set of all Z G Z , ( 0 , H) so that I-Z*Z is positive 
definite. If dim H< oo the Dn(H) exhaust the Cartan domains of type 
I in the sense of Hua [3 ]. Furthermore, Di(H) =B. 

Let Q be the quadratic form on HXCn defined by Q(z, w) = \\z\\2 

— Il^ll2, zÇzH, wÇzCn. Let U(H, n) be the space of continuous linear 
maps of HXCn to HXCn,T, so that Q(T(z, w)) = Q(z, w), Q(T*(z, w)) 
— Q(z> w). I t is not hard to show that the elements of U(H, n) are 
invertible. Hence U(H, n) is a subgroup of the general linear group of 
HXC\UgEU(H,n), and 

g LC* DA 

where A:H->H, B,C:Cn-*H, £>:C n -»C, then for each ZGDn(H), 
C*Z+D is invertible. 

We may define 

g-Z = (AZ + B) o (C*Z + D)~\ 

THEOREM 3.1. Let f:Dn(H)-±Dn(H) be a holomorphic self-equiv­
alence. Then there is a g £ U(H, n) so that f (z) = g-Z for all ZÇzDn(H). 

Theorem 3.1 is proved using a generalized Schwarz lemma (a 
slight generalization of a result of Harris [2]) for bounded, convex, 
circled domains in Banach spaces and some elementary Hilbert space 
theory to reduce many of the difficulties to finite dimensional prob­
lems. The proof in [ l ] also gives a direct proof of this result in the 
case dim H<*>. 
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THEOREM 3.2. Dni(H)X • • • XDnk(H) is holomorphically equiv­
alent with Dm(H)X • • -XDmr(H) if and only if r = k and there is a 
permutation a of (1, • • • ,k) sothatnii^nohi^l, • • • , k. 

A similar result is true allowing the Hubert spaces in the products to 
be different. I t must only be kept in mind that Dn(C

k) =Dk(C
n). 

4. -D00. Let H—P be the space of all square summable complex 
sequences. Let D00 = {{zn} &2 | supn\zn\ < 1} . 

LEMMA 4.1. D™ is not holomorphically equivalent to a bounded 
domain in H. 

The importance of this result is that it shows that Siegel domains of 
type II (even I ! that is, tubes over open convex cones without straight 
lines) are not necessarily equivalent to bounded domains. 

The details of the results announced in §3,4 will appear in [l ]. 
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