THE STRUCTURE OF ω-REGULAR SEMIGROUPS

BY JANET AULT AND MARIO PETRICH

Communicated by R. S. Pierce, July 20, 1970

1. Finding the complete structure of regular semigroups of a certain class has succeeded only when sufficiently strong conditions on idempotents and/or ideals have been imposed. On the one hand, there is the theorem of Rees [7], giving the structure of completely 0-simple semigroups, and its successive generalizations to primitive regular semigroups [2], and 3- and 3₁-regular semigroups [4]. On the other hand, with very different restrictions, Reilly [8] has determined the structure of bisimple ω -semigroups, Kočin [1] of inverse simple ω -semigroups, Munn [5] of inverse ω -semigroups.

An ω -chain with zero is a poset $\{e_i | i \ge 0\} \cup 0$ with $e_i > e_j$ if i < j, and $0 < e_i$ for all i, j. We call a regular semigroup S ω -regular if S has a zero and the poset of its idempotents is an orthogonal sum [2] of ω -chains with zero. We announce here the complete determination of the structure of such semigroups, including various special cases thereof, and briefly mention their isomorphisms.

- 2. An ω -regular semigroup can be uniquely written as an orthogonal sum of ω -regular prime (i.e., with 0 a prime ideal) semigroups. This reduces the problems of structure and isomorphism to ω -regular prime semigroups. We distinguish three cases: (i) 0-simple, (ii) prime with a proper 0-minimal ideal, (iii) prime without a 0-minimal ideal. Case (i) is the most difficult (and interesting) and includes a variety of special cases some of which reduce to those constructed by Reilly [8], Kočin [1], and Munn [5], [6].
- 3. Let A be a nonempty set, d be a positive integer, V be a semi-group which is a chain of d groups $G_0 > G_1 > \cdots > G_{d-1}$, and σ be a homomorphism of V into G_0 . Let $w: A \to \{0, 1, \cdots, d-1\}$ be any function, denoted by $w: \alpha \to w_\alpha$. For $\alpha \in A$, $0 \le i, j < d$, define $\langle \alpha, i \rangle$ by

$$\langle \alpha, i \rangle \equiv w_{\alpha} + i \pmod{d}, \qquad 0 \leq \langle \alpha, i \rangle < d,$$

and define $[i, \alpha, j]$ to satisfy

$$[i, \alpha, j]d = (i - j) - (\langle \alpha, i \rangle - \langle \alpha, j \rangle).$$

AMS 1970 subject classifications. Primary 20M10.

Key words and phrases. Regular semigroups, ω -regular, ω -semigroups, 0-simple, 0-bisimple, prime semigroups, orthogonal sum, Brandt semigroups, primitive inverse semigroups, 0-restricted homomorphisms, semilattice, tree, Brandt tree, rooted Brandt tree.

Construction I. On the set

$$S = \{(\alpha, m, g, n, \beta) | \alpha, \beta \in A, m, n \ge 0, g \in V\} \cup 0,$$

define a multiplication by: for $g_i \in G_i$, $g_j \in G_j$, $v = n - s - [i, \beta, j]$,

$$(\alpha, m, g_{i}, n, \beta)(\beta, s, g_{j}, t, \gamma) = (\alpha, m - [i, \alpha, j] - v, (g_{i}\sigma^{-v})g_{j}, t, \gamma)$$
if $v < 0$, or $v = 0$, $i \le j$;
$$(\alpha, m, g_{i}, n, \beta)(\beta, s, g_{j}, t, \gamma) = (\alpha, m, g_{i}(g_{j}\sigma^{v}), t + [i, \gamma, j] + v, \gamma)$$
if $v > 0$, or $v = 0, i > j$;

and all other products are equal to 0. The set S with this multiplication will be denoted by $O(A, w; V, \sigma)$.

Construction II. On the set

$$S' = \{(\alpha, m, g, n, \beta) \mid \alpha, \beta \in A, m - w_{\alpha} \equiv n - w_{\beta} \equiv i \pmod{d}, g \in G_i\} \cup 0,$$

define a multiplication by: for $g_i \in G_i$, $g_j \in G_j$, $v = n' - s' - [i, \beta, j]$, where n = n'd + n'', s = s'd + s'', $0 \le n''$, s'' < d,

$$(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m + s - n, (g_i\sigma^{-v})g_j, t, \gamma) \text{ if } n \leq s;$$

$$(\alpha, m, g_i, n, \beta)(\beta, s, g_j, t, \gamma) = (\alpha, m, g_i(g_j\sigma^v), t + n - s, \gamma) \text{ if } n > s;$$

and all other products are equal to 0. The set S' with this multiplication will be denoted by $O[A, w; V, \sigma]$.

The following is our fundamental result.

THEOREM 1. For a groupoid S, the following statements are equivalent.

- (i) S is a 0-simple ω -regular semigroup;
- (ii) S is isomorphic to $O(A, w; V, \sigma)$;
- (iii) S is isomorphic to $O[A, w; V, \sigma]$.

The proof of "(i) \Rightarrow (ii)" consists of "introducing coordinates" into various \mathcal{L} - and \mathcal{R} -classes and of constructing the homomorphism σ ; it is quite long and is broken into a sequence of lemmas. For "(ii) \Rightarrow (iii)" one finds a suitable isomorphism, while "(iii) \Rightarrow (i)" consists of a verification of the defining properties of a 0-simple ω -regular semigroup.

Define the top of S in the theorem by

$$\mathfrak{I}(S) = \{a \in S \mid e \ \& \ a, \ a \ \Re f \text{ for some maximal idempotents } e, f\} \cup 0.$$

Then $\Im(S)$ is a primitive inverse semigroup. It follows from the proof that we can always suppose that $w_{\alpha} = 0$ for some $\alpha \in A$. Call S balanced if any two maximal idempotents of S are \mathfrak{D} -equivalent.

Theorem 2. The following conditions on a 0-simple ω -regular semigroup S are equivalent.

- (i) S is balanced;
- (ii) S admits a representation as in Theorem 1 with $w_{\alpha} = 0$ for all $\alpha \in A$;
 - (iii) 3(S) is a Brandt semigroup;
- (iv) S is isomorphic to a Rees matrix semigroup $\mathfrak{M}^0(K; A, A; \Delta)$ over a simple inverse ω -semigroup K, Δ is the identity matrix.

The structure of the semigroup K in Theorem 2 was determined by Kočin [1] and Munn [5], the Rees matrix semigroups over bisimple inverse semigroups were studied in [3] (for the 0-simple case in the theorem, cf. [3, Corollary 5.7] and [6, Theorem 4.2]). Various other special cases include: 0-bisimple, combinatorial, balanced, and combinations thereof.

4. For the remaining cases, we will need the following.

Construction III. Let Y be a tree semilattice satisfying one of the two conditions: (1) Y has a zero ζ and all elements of Y are of finite height, (2) Y has no zero and is of locally finite length. To every nonzero element α of Y associate a Brandt semigroup S_{α} , suppose that the family $\{S_{\alpha}\}$ is pairwise disjoint, and that a homomorphism $\phi_{\alpha}: S_{\alpha} \to S_{\bar{\alpha}}$ is given, where $\bar{\alpha}$ is the unique element of Y covered by α , with the properties:

- (i) $S_{\alpha}\phi_{\alpha} \cap S_{\beta}\phi_{\beta} = 0$ if $\bar{\alpha} = \bar{\beta}$;
- (ii) for every infinite ascending chain $\alpha_1 < \alpha_2 < \cdots$ in Y and every $a \in S_{\alpha_1}^*$, there exists α_k such that $a \notin S_{\alpha_k} \phi_{\alpha_k} \phi_{\alpha_{k-1}} \cdots \phi_{\alpha_2}$. Let $\psi_{\alpha,\alpha}$ be the identity mapping on S_{α} , and for $\alpha > \beta$, let $\psi_{\alpha,\beta} = \phi_{\alpha} \phi_{\alpha_1} \cdots \phi_{\alpha_n}$ where $\alpha \succ \alpha_1 \succ \cdots \succ \alpha_n \succ \beta$. Let $S = (\bigcup_{\alpha \in Y \setminus S} (S_{\alpha} \setminus 0_{\alpha})) \cup 0$ where ζ is the zero of Y (if Y has one), and 0 is an element not contained in any S_{α} , and on S define the multiplication * by
- $a * b = (a\psi_{\alpha,\alpha\beta})(b\psi_{\beta,\alpha\beta})$ if $\alpha\beta \neq \zeta$ and $(a\psi_{\alpha,\alpha\beta})(b\psi_{\beta,\alpha\beta}) \neq 0_{\alpha\beta}$ in $S_{\alpha\beta}$, and all other products are equal to 0. The set S with this multiplication will be called a *Brandt tree* if Y has a zero and a *rooted Brandt tree* otherwise.

THEOREM 3. A semigroup S is prime ω -regular and has a proper 0-minimal ideal if and only if S is an ideal extension of a 0-simple ω -regular semigroup I by a Brandt tree T determined by a 0-restricted homomorphism of T into the top of I.

Such a homomorphism is completely determined by its restriction to the socle $\mathfrak{S}(T)$ of T, so all such homomorphisms are given by 0-restricted homomorphisms of $\mathfrak{S}(T)$ into $\mathfrak{I}(I)$, both of which are primitive inverse semigroups, and are easy to find explicitly.

THEOREM 4. A groupoid S is a prime ω -regular semigroup without 0-minimal ideals if and only if S is a rooted Brandt tree.

5. The semigroups $O(A, w; V, \sigma)$ and $O[A, w; V, \sigma]$ do not seem to admit a neat isomorphism theorem except in special cases. In the balanced case, using Theorem 2, [3, 4.1], and [1, Theorem 4], we derive a satisfactory isomorphism theorem. A direct proof does the same in the case these semigroups are combinatorial. Isomorphisms of the semigroups in Construction III are similar to those in [4, Théorème 3.1], while isomorphisms of the semigroups in Theorem 3 can be expressed by isomorphisms of I and I satisfying a commutative diagram.

REFERENCES

- 1. B. P. Kočin, The structure of inverse ideally-simple ω -semigroups, Vestnik Leningrad. Univ. 23 (1968), no. 7, 41-50. (Russian) MR 37 #2881.
- 2. G. Lallement and M. Petrich, Décompositions I-matricielles d'un demi-groupe, J. Math. Pures Appl. (9) 45 (1966), 67-117. MR 33 #5765.
- 3. ——, A generalization of the Rees theorem in semigroups, Acta Sci. Math. (Szeged) 30 (1969), 113-132. MR 39 #2899.
- 4. ——, Structure d'une classe de demi-groupes réguliers, J. Math. Pures Appl. 48 (1969), 345-397.
- 5. W. D. Munn, Regular ω -semigroups, Glasgow Math. J. 9 (1968), 46–66. MR 37 #5316.
 - 6. ——, 0-bisimple inverse semigroups, J. Algebra 15 (1970), 570-588.
- 7. D. Rees, *On semi-groups*, Proc. Cambridge Philos. Soc. **36** (1940), 387-400. MR **2,**127.
- 8. N. R. Reilly, Bisimple ω -semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160–167. MR 32 #7665.

THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802