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1. Introduction, Let 8 be a bounded domain with infinitely 
differentiable boundary <5£2 in w-dimensional real space Rn* Let k be 
a positive integer, and let us define the functions a»(#, £) for multi-
indices \i\ = ii+H+ • • • -\-in^k, continuous in ÜXRK, where K is 
the number of indices of length ^k. By Wp\Q)t we denote the 
Sobolev space of Lp-functions whose derivatives up to the order k 
are also Lp-functions, with the norm 

UP 

Mk*-( f E \D*u\>dxX', 
\JQ\i\$k / 

where the usual notation 

alii 
/ ? « » • 

dx[* • • • dxl» 

is introduced. The functions a,i(x, £) are supposed to satisfy the 
growth-conditions : 

(1.1) |a«(*,ö|£*(l + |€|). 
Let functions UQEW?(Q) and fiEL2(Q)t \i\ £k, be given. Let 

Wp^iQ) be the closure of £>(0), the space of infinitely differentiable 
functions with compact support, in the space W^(Q). 

A function u from W^ÇQ) is called a weak solution of the Dirichlet 
problem: dlu/dnl = dlu0/dnl on dft, Z = 0, 1, • • • , k — lt (where d/dn 
is the derivative with respect to the outer normal), 

£ (-l)l<iZ>«(a,(*, *(«))) = Z (-WW/i in 12 

(where the components of %(u) are Dju) if 
(1.2) u-uQeW?\Q), 
(1.3) for every v in W^ (0): 

/
£) /)*»<*<(*, $(«))<** = f X ötytffo-
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We will suppose the following: 

(1.4) E Oi(x, Qb è d U f i - c%. 
\i\sk \i\sk 

For the sake of simplicity, we suppose the differentiability of a»(#, £) 
with respect to £y and 

(1.5) 
Bai 

dl, 
S c, E r ViVi è c ^ r?i. 

It'l.lils* B%j |t-|»fc 

The following condition for asymptotic behaviour of a»(x, £) is 
required: there exists continuous an(x) in 5, | i | , \j\ ^kt such that 

(1.6) E atiWM, è ci E d 
«Mils* Ml-* 

and such that for t>0: 

(1.7) 2^ a*X*)& 
* ISIs* 

25*0(1 + | * | ) , 

where £(/)—>() for /—> oo. 
The main result is: 

THEOREM. Let 2Sp<«> and u^Wfiti), /»eZ,p(Ö). Létf the con-
ditions (1.1), (1.4)—(1.7) be satisfied. Then there exists a unique weak 
solution of the Dirichlet problem belonging to the space Wpfc)(Q). It 
satisfies the inequality: 

(1.8) \\u\\ktP ^ c(p)(l + Z \\fi\\o,P + \\uo\\k,\ 

I t is well known that the regularity problem consists of proving 
that the weak solution belongs to the class C(*)»'1, the class of func­
tions whose derivatives up to order k are ju-Hölder continuous (in £2 
or Ô). The solution of this problem is not known in general. Under 
certain conditions, given more general growth of the functions 
ai(x, £): |ai{Xy £) | Sc(l+ \£| wl"~1), \<m< » , the answer is affirmative 
for the case of one second-order equation; see, for example, O. A. 
Lady2enskaja-N. N. Uralceva [5], Ch. B. Morrey [7], and for w==2, 
k^l, see J. Neëas [ç]. For higher dimensions and order, or for sys­
tems of second or higher order, this problem is still open. There is a 
counterexample under a slightly different hypothesis for the second-
order systems of E. Giusti and M. Miranda [4], where the solution 
is bounded, but not continuous. This situation implies the definition 
of partial regularity: there exists a set F closed in 0 with mes(F) = 0 , 
such that the weak solution belongs to C^khlt(Q\F). 
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Partial regularity was proved in the papers of Ch. B. Morrey [8], 
E. Giusti-M. Miranda [3 J, E. Giusti [2]. If we look to the scale 
W(p\ 2£p<i oo, and if we extend it further to C™* for 0</x<l, we 
see that the cut between weak and regular solutions is the space 
W*\ Hence, a weak solution is called demiregular if wEflp^W^CQ), 
and this is an immediate consequence of our theorem, provided 
*oeW^(0)and/ ,G2^(0) . 

2. Proof of the Theorem. We use the following nontrivial lemma 
from the theory of linear elliptic equations, see, for example, J. L. 
Lions, E. Magenes [ô]. 

LEMMA 1. Let w be a weak solution of 

m.iiiâ* Kis* 

in Q, with /<eL,(Û), O O > £ > 1 , w-u<>Efy*(Q), uo&W?(Q) and 
with a%j satisfying (1.6). Then there exists a unique solution and 

(2.i) NI**^(zWo» + IWk). 

As an immediate consequence of Lemma 1, we obtain: 

LEMMA 2. For wEWpk)(ti), «>>P^2, 

SUP o(k) I Z) &ii{%)D vDw dx^ c(p)\\w\\k,p, 
hh.p's i ,«€wy (Q) J Q \i\,\j\*k 

where l / p ' + l / p = l. 
Using well-known results about monotone operators, their appli­

cations to nonlinear boundary value problems, compare F. E. Brow-
der [l] , we have: 

LEMMA 3. Under the conditions (1.1), (1.4), (1.5), there exists a 
unique solution of (1.2), (1.3) and 

(2.2) ||«||M S c( 1 + Z IWIci + I M M Y 
\ \i\sh / 

Proof of the theorem. Let 0 ̂ r ^ 1, and let us consider the family of 
differential operators defined as 

(2.3) ( 1 - r ) D (-l)KIZ>'(a^)Z?^) + r Z ( - l ) , < l ^ ( ^ ( * i « « ) ) ) . 
KMSIs» HI** 

We can easily see that the conditions (1.1), (1.4), (l.S) and (1.7) 
are valid with constants independent of r. Hence, for O ^ r ^ l , there 
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exists a unique solution of our problem in PFf^Q). For r = 0, we 
have, in virtue of Lemma 1, the assertion of the theorem. 

(i) Let the assertion be valid for some r0. Then it is true for 
T o ^ r O o + e ^ l with some €>0. 

Let v&Wp
k)(Q) be such that V-UQEW™(Q) and let us define the 

operator A:v—>Av such that Av is the solution of the problem with 
the functions 

/» + (r — TO) X aij(x)D3'v + (r0 — r)a<(ff, £(v)) 
\j\ak 

substituted for ƒ»•. 
For r=T0 , we obtain from (1.8) that the solution belongs to the 

ball ||w||jfc,p^i? where 

R - (C(P) +1) (i + E \\fi\\o,P + IWk,\ 

Let us take first v in the ball ||z>|kpa22£ and then e small enough 
such that ||4z;||*,p^2.R. It follows from (1.5): 

I ]C (di(x, £(ui)) — <n(x9 £(«2)))#*(«i — u2)dx 

^ zn^(«i-«i)iro.i. 
Hence, with c small enough 

(2.4) \\A(và - A(v2)\\kt2 £ a\\vx - V,| |M, 0 g a < 1. 

If we introduce into the set | |V||*,P^2JR, V — WOE W^*}(Ö), the metric 
induced by the norm ||fl||*,2, w e obtain a complete metric space and 
the operator A is a contraction. This implies the existence of a fixed 
point, which is à solution of (1.2), (1.3) belonging to Wp

k)(Q). From 
(1.8), this estimation for roSr<T+e with e small enough follows. 

(ii) For O g r ^ l and u(EWp
k) the solution of the problem, an 

estimation (1.8) holds with c(p) independent of r. Let us suppose 
the contrary. Then for n integers, there exists rn and f?ÇzLp, «J£ 
with «nS W® the solutions of the problem, such that 

NI.*s«(i+ZIWI.* + NI.-). 
\ \i\sk / 

Let 

If we put g? = (l/*n)/? and t$ = *£/&» we obtain that g?—>0 in LP and 
VÏ-+0 in Wf\ We have for <pGW^: 
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( l - r n ) f ]£ aijWDW'vndx + Tn \ £ — a<(*, t»$(pn)) Dtyx 
•J OUI.M** ^ 0 \i\*k U 

= I 2 D%<pgidx 

— I 23 aij(x)Di(pD3'vndx 
•J «1*1. Ms* 

+ Tn X ( <**(*> W W ) — 1 3 u t v W ^ n l ^ V ^ 

In virtue of Lemma 2, we can choose #>n such that ||^n||*,p' = l and 

/
Y! an(x)D <pnD (vn — »o)^ è î > 0 f or w ^ w0> 

QKI.Ms* 

which implies for n*zn'Q: 

(2.5) I £ a^D^nDhndx è c2 > 0. 

Because of (1.7), we obtain 

lim If X (—«<(*, W W ) ~ IL, ay(x)D*VnYDfyndxl 

9n||*lp'||t>n||*.p) —>0 

which gives, together with (2.5) and because g?—*0 in Lp, the con­
tradiction. 

(iii) By standard argument, the set S of r where the theorem is 
valid, is closed; this follows from the fact that if r w £ 5 and un are 
solutions, then as above, un—>u in W™ where u is the solution for 
r = limn^00rn. But, since 

\\un\\k,p g c ( l + £ ) ||/<l|o,p + | |«o | |* .p) , 
\ Kiss* / 

the same is true for u. As in (ii), the set S is open; so it is the whole 
interval (0, 1). q.e.d. 
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