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1. Equational axiom problems. This note presents a general method 
for solving a number of problems in the equational theory of lattices. 
Current interest in this theory stems from Jonsson's important dis­
covery [7], building on earlier work of Birkhoff, that a lattice shar­
ing the algebraic identities common to a given class K of lattices is 
more tightly bound to K than would be expected for most other 
kinds of algebraic systems. In this context, a natural question for any 
such class K is the following "axiom problem.n 

A.P.(K) : Find a set of equational axioms for K, i.e., a set 2 of iden­
tities, common to the members of K, of which all other such identities are 
lattice-theoretic consequences. 

An equivalent requirement on 2 is that the class of lattices de­
fined by 2 coincide with Ke, the smallest equational class (class de­
finable by identities) containing K. 

The problem A.P.(JFC) is to be viewed as a practical one; the solu­
tion is to be constructed explicitly starting from some given defini­
tion of K. McKenzie [9], for example, has given just such an explicit 
solution of A.P. ( {L} ) for each finite lattice L. 

The general method to be developed below solves the axiom prob­
lems of all classes of lattices in the following list, among many others. 

(a) PP, the class of all projective planes (viewed as lattices of flats). 
More generally, 

(b) PP(&), the class of projective planes subject to a given list 8 of 
excluded configurations. An example is the class of Desarguesian 
planes, for which solutions to the axiom problem have been given 
by Schiitzenberger [lO] and Jónsson [6, Theorem 7.1]. 

(c) Lth(m), the class of all lattices of length at most m, i.e., lattices 
in which the longest chain has a t most m + 1 elements. This axiom 
problem was posed by Jónsson, who later solved the case m = 2 [8]. 

(d) Wth(m), the class of all lattices of width at most m, i.e., lattices 
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in which every totally unordered subset has at most m elements. This 
axiom problem was also posed by Jónsson; the case m = 2 was solved 
by McKenzie [lO]. 

(e) Br(tn), the class of all lattices of breadth at most m, i.e., lattices 
such that every join of m + 1 elements is redundant. 

(f) PI, the class of "planar" lattices, i.e., lattices which can be 
order-embedded in a product of two chains. 

(g) Ki\JKiy the union of two equational classes of lattices, each 
defined by a given finite set of identities (McKenzie). 

Additionally, Wille [12] raises the topic of equational axioms for 
the classes MC\Lth{m) and Mr\Wth(m) of modular lattices of 
length or width at most m. (Here M denotes the class of all modular 
lattices.) Jónsson [8] in effect solves the case A.P.(MnWYh(3)) . 
The promised solution of A.P.(K) for any of the nonmodular classes 
K of (c)-(g) above will yield a solution to A . P . ( M n K ) when aug­
mented by the modular identity. 

For each of the axiom problems previously solved, the axioms 
given have been finite in number. McKenzie [9] and the author [ l ] 
have, however, given examples of classes K for which A.P.(K) has no 
finite solution. In fact, it can be shown that, in a t least these specific 
cases, no finite solution exists: Lth(m) for w ^ 4 ; Wth(m) for m à 4 ; 
MC\Wth(m) for m^5; Br(m) and Mr\Br(m) for m^2; PI; and 
KiUKz for certain equational classes K\, K2 each defined by a single 
identity. On the other hand, PP and Mr\Lth(m), for all m, do give 
finite solutions. (Details will appear elsewhere.) The general method 
of §§2-3 below for solving axiom problems always yields an infinite 
list of identities, reducible (not necessarily constructively) to a finite 
list when a finite solution exists. 

The methods of this paper can be generalized to solve axiom 
problems relative to any equational class of algebras to which Jons-
son's results of [7] apply. Especially promising are applications to 
orthomodular lattices, Heyting algebras, and lattice-ordered groups. 

A general reference for lattice theory is [3 ] ; for universal algebra, 
[5]. 

2. A general problem. A common method of solution to all the 
axiom problems listed in §1 is to be found a t the end of this twisting 
trail of reasoning: 

(1) The most powerful tool relevant to such problems is Jonsson's 
main theorem of [7]. 

(2) The classes of lattices to which Jonsson's theorem applies most 
naturally are those which are closed under the formation of sub-
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lattices, homomorphic images, and ultraproducts. Following the ad 
hoc terminology of [l ], let us call such classes "stable." 

(3) I t is a result in model theory that a stable class is definable by 
sentences of a simple form, namely by universally quantified dis­
junctions of polynomial equations (UDE's). 

(4) Happily, most of the classes of lattices on our list are stable, and 
it is possible to give explicit defining UDE's . The other classes can be 
expanded to stable ones without changing their axiom problems. 

(5) Therefore, all the listed axiom problems are but instances of the 
axiom problem for a much more general class, namely, the problem 
A.P.(Lat A), where A is any given set of UDE's and Lat A denotes the 
class of all lattices satisfying all the sentences in A (lattice models of 
A). 

(6) This very general axiom problem can immediately be reduced 
to the case where A consists of a single UDE 8. A solution to this re­
duced problem will be constructed in the next section. 

Amplification f or (1), (3), (4), (6). For (1). A statement of Jons-
son's result of [7, §3], adapted for our purposes, is as follows. (For 
terminology, see [3] or [S].) 

THEOREM 2.1 (JÓNSSON). Let S be the class of all subdirectly irreduci­
ble lattices. If K is stable, then SC\Ke — Sr\K\ in fact, Ke is the unique 
equational class E such that Sr}E=Sr\K. 

For (3). A class closed under formation of ultraproducts, sublat-
tices, and isomorphic images is axiomatic [5, Corollary 1, p. 258]; an 
axiomatic class closed under formation of sublattices and homo­
morphic images is definable by positive universal sentences [5, 
Corollary 2, p. 275], each of which is trivially equivalent to a con­
junction of UDE's . Conversely, if A is a set of UDE's, Lat A is stable. 
Any identity, of course, is trivially a UDE. 

For (4). The key method is to apply the following principle from 
[ l ] . If P is any finite partly ordered set and N(P) is the class of all 
lattices which contain no order-isomorphic copy of P , then N(P) is 
stable. For example, Lth(m) =N(Cm+2), where Cm+2 is an (m+2)-ele-
ment chain; Wth(m) =N(Um+i)> where Um+i is a totally unordered 
set of m+l elements; Br (ni) =N(Bm+i), where Bk is the partly ordered 
set consisting of 1-element and (k~ l)-element subsets of a fe-element 
set; Pl = C\iN(Qi), where Qu (?2, • • • correspond to "comparability 
cycles" [2]. For any given P , N(P) can be defined by an explicit UDE 
as follows. 

LEMMA 2.2. Let p(\), * • • , p(n) be the elements of the finite partly or-
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dered set P. For each i, let gi(x) denote the lattice polynomialgi(xi, • • • ,xn) 
~ VjXj withj ranging over {j:p(J) =zp(i)}. Then N(P) =Lat {8}, where 
8 is the UDE (Vxh • • • , xn)ORitk[gi(x) =gi(x)Vgk(x)] with (i, k) 
ranging over {(i, k) :p(k) &P(i)}. 

Here OR denotes logical disjunction, to avoid confusion with lat­
tice operations. The proof of the lemma is easy and will be omitted. 

For a treatment of the nonstable classes PP and PP(S) in terms of 
N( ), see [ l ] . The only remaining class on our list is Kx\JKt\ this 
class is definable by conjunctions of pairs of identities, each of which 
can be turned into an equivalent UDE by using disjoint sets of 
variables and taking quantifiers outside. 

For (6). If A is a set of UDE's, a solution to A.P.(Lat A) is obtained 
merely by lumping together all the identities involved in the solu­
tions 2$ of the various problems A. P. (Lat 8) for S G A. This follows 
from the computation 

Lat(UeA25) = D*=A Lat 2* = PIKEA (Lat8)« = ( f W Lat8)« « (Lat A)% 

in which the third equality is an application of Theorem 2.1, and 
Lat 8 means Lat {8}. 

3. A solution to the general problem. As shown in the last section, 
it suffices to solve A.P.(Lat 8), where 8 is a single UDE. Such a 8 
can be written as 

8 = ( V*x, • • • , xm)[h(x) = gl(x) OR- -OR fn(x) = gn(x)]. 

Replacing ƒ,•, g{ by fiAg» fiVgi if necessary, we may assume that 
fi(*)Sgi(x) for a l i i . 

The polynomials appearing in the solution of A.P. (Lat 8) will be 
constructed as a three-layered composition, with the inner layer con­
sisting of the fi and gi. The middle layer will be built from the poly­
nomials pk defined for & = 0, 1, 2, • • • by 

pk(t\ * ! , • • • , * ) = ( • • • (((' V *i) A «0 V «0 • • • i 

ending in • • • ) A *h f or k even, • • • ) V z* f or k odd. 

The outer layer will consist simply of p2n(t; z) for n as in 8. I t will be 
apparent from the proof of Theorem 3.1 that this type of construc­
tion is indeed a natural one. 

For 8 as given, then, let us construct for each fe = 0, 1, 2, • • • an 
identity o**, as follows. Let Z b e a n w X i array of variables sj, let r< 
stand for the expression £*(/*(x); z{, • • • , 4)> and let Si stand for 
Pk(gi(x); z\, • • • , 4 ) . Let <rk be defined by 
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<Tk = ( Vw, v, x, Z)[p2n(u; rh sly • • • , rn , sn) = p2n(v) rh $u • • • , rn, $„)]. 

Let 2a be the collection {oV.& = 0, 1, 2, • • • }. 

THEOREM 3.1.2a sofoes ^ ^ axiom problem for the class Lat 5. 

The proof, given below, will depend on three properties of the 
polynomials pk. For a lattice L let Quo(L) denote the set of nontrivial 
"formal quotients" of L, i.e., pairs (a, b)GLXL with b>a, written 
instead as b/a. For b/a, d /c£Quo(L) , write b/a—>d/c if there exist 
k^O and elements wu • • • , WkÇzL such that c = pk(a; Wu • • • i w*), 
d = pk(b;wi, • • • , w/k). This is shown without difficulty to be equiva­
lent to the assertion that d/c is weakly projective into 6/a [4, Defini­
tion 2.1]. 

LEMMA 3.2. Let L be a lattice. 
(i) If c, au • • • , aicÇïL and a< = a<+i for some i, then the value 

pk(c\ ai, • • • , au) does not depend on the choice of c. 
(ii) If d /cEQuo(L) andu — c or u = d, then pk(u; c,d,c,dr • • • % c, d) 

= u. 
(iii) —» is a quasi-ordering on Quo(L) and is directed if L is subdi-

rectly irreducible. 

PROOF, (i) and (ii) are immediate, as are reflexivity and tran­
sitivity in (iii). Directedness is verified as follows. For b/aÇzQuo(L), 
let 0(a, b) denote the congruence relation generated by identifying a 
and b. [4, Lemma 2.1] states that if 0(c, d)£0(a , b)> then there exists 
a chain C = CQ<CI< • • • <cn = d with b/a—>Ci/ci-i for all i>0. 
Further, if L is subdirectly irreducible, there exists a smallest con­
gruence relation 0(c, d) [3, Corollary 2, p. 140]. Thus, if b/a, b''/a' 
are any two given elements of Quo(L), there are corresponding chains 
{°i} » { C'J } from c to d. Choose (i, j) to be a minimal pair of indices 
such that CiAcj>c. Then for e — CiAc'j, b/a-*Ci/ci-i->e/c, b'/a' 
—>Cj/cj_l—*e/ci so that e/c is an upper bound for b/a, b'/a' in Quo(L). 

PROOF OF THEOREM 3.1. We must show that (Lat 3)e = Lat 2a. By 
Theorem 2.1, it is sufficient to verify that for a subdirectly irreducible 
lattice L, L £ L a t 5 if and only if L £ L a t Sa. 

Suppose L £ L a t 5. Then for any k and for any substitution of ele­
ments for the variables {#»•}, {sj}, we have the following situation: 
For some i, the evaluated ƒ» and g» are equal. Then the evaluated r< 
and Si are also equal, and hence by Lemma 3.2-(i), the value of 
p2n(c; ru su • • • , fn» sn) does not depend on the choice of c £ L — 
exactly what <Tk asserts! Thus L £ L a t Sa. 

Suppose conversely that L(£Lat 8. Then, interpreting variables as 
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elements of L, we know that there exist xi, • * • , xm£:L such that 
fi(x)<gi(x) for all i. Write a t =/ i (x) , bi = gi(x). By Lemma 3.2-(iii), 
there exists d/c^Quo(L) such that bi/a,i->d/c for all i. Then, for a 
large enough &, there exist suitable z^ÇzL such that for all i, ti 
= pk(di; z\, • • • , 4 ) = ^ Si = pk(bi; z\, • • • , s * ) ^ . Setting ** = £, «/ 
= d and applying Lemma 3.2-(ii), we obtain ^2n(w; ru si, • • • , r», sw) 
= c, ^>2n(̂ ; f it $i, • • • , r„, sn)=d, a violation of c*. Therefore L £ 
Lat 2«. The proof is thus complete. 
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