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Consider a configuration in Euclidean 3-space consisting of a sur
face T and of a rectifiable Jordan arc r = { j = j ( r ) ; 0 g r g l } having 
its end points on T, but no other point in common with T. Denote 
by P the semidisc in the (w, ü)-plane P = {w, v; u2+v2 <1 , fl>0}, by 
d'P and d"P its boundary portions {u, v; u2+v2=l, v>0} and 
{u,v; - 1 < « < 1 , » = 0) , respectively, and by Pr the domain PUd'P. 

A surface 5 = {f = f(w, v); (u, v)ÇzP'} is said to be bounded by the 
above configuration, or chain (I\ T), if its position vector f(w, v) 
= {x(uf v), y(u, v), z(u, v)} satisfies the following conditions: 

(0 t(u,v)ec»(P'). 
(ii) i(u, v) maps the arc d'P onto the open arc ( r ) = { ^ = j(r); 

0 < r < 1} monotonically in such a way that 
lim j(cos 0, sin 6) = $(0), Urn j(cos 6, sin 6) = g(l). 

(iii) The relation lim,».^ dT[l(un} vn)] = 0 holds for every sequence 
of points (un, vn) in P' converging to a point on d"P. 

Here dT[lc] = mitsT | f ~ t | denotes the distance between the point 
£ and the surface T. 

Obviously, the convergence specified under (iii) is uniform in the 
following sense: 

lim sup dr[ic(u, v)] = 0 . 
Ô-K) ( « , » ) G P ' ; 0 < ^ « 

Thus while the distance function dr\l{u, v)] is continuous in P, the 
same cannot generally be said about the vector £(w, v). In fact, the 
trace of S on 2", i.e. the set of limit points on T for all sequences 
$(un, vn) as in (iii) above, may well look quite bizarre. Examples 
illustrating such contingencies can be found in [2, pp. 95-96] and 
[4, pp. 220-222]. 
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Denote by U the collection of surfaces S= {£ = $(w, v); (u, n )G? ' j 
which are bounded by the chain (r, T) and whose position vector 
belongs to the regularity class C»{P')f\H\(P). Here H\(P) is the 
pertinent Sobolev space insuring that %(u, v) possesses square sum-
mable generalized derivatives. If the end points of Y can be connected 
on T by a rectifiable arc, then the resulting closed contour spans a 
surface of class U. In 1938 R. Courant proved that, whenever the 
class U is not empty, there exists in U a surface 5 = {£ = $(&, v)\ 
(u, v)ÇzP'} minimizing the value of Dirichlet's integral 

Dp[l] = 2 I J (lu + Ùdudv; 

see [ l ] ; [2, pp. 87-96]; [4, pp. 201-223], and for further results 
[S], [ô], and [lS]. The position vector of the solution surface has the 
following additional properties: 

(ii') The mapping of d'P onto (T) is topological. 
(iv) i(u} v) is harmonic in P and satisfies in P the conditions 

2 _ a _ 

For the last three decades it has been a problem of great challenge 
to study the regularity of the solution surface on its free boundary 
and the nature of its trace. In this context the search for minimal 
conditions on the bounding surface T which would guarantee the 
continuity of the trace deserves particular attention. Over the years 
the problem has been investigated for the case of planes [4], [lS], 
closed orientable analytic surfaces [lO] and, "admissible" surfaces 
of class Cm, m^2, [8], [14] as bounding surfaces. Further remarks 
and results are contained in [3], [7]. It is the purpose of this paper 
to report a number of new theorems concerning the trace for the 
case of more general bounding surfaces—C^-surfaces and surfaces 
satisfying a CA ( = chord-arc) condition. 

The proofs rest on the "least area property" of the solution surface 
which never seems to have been formulated or proved before, al
though the corresponding, but easier to demonstrate, property of the 
classical solution for Plateau's problem is well documented. 

THEOREM 1. The area of a surface of class U whose position vector 
minimizes Dirichlet's integral (in this class) simultaneously represents 
the minimum of the (Lebesgue) areas of all surfaces bounded by the 
chain (I\ T). 

The proof of Theorem 1 relies on facts from the theory of Lebesgue 
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area and on devices due to H. Lebesgue [9, pp. 386-388 and p. 388], 
E. J. McShane [ l l , pp. 722-724] and R. Courant [2, pp. 89-91] 
and [4, pp. 203-205]. 

For reasons of convenience also the complex notation will be used: 
Setting w = u+iv=peid we shall interchangeably write i(u, v), or 
%(w), or 3ç(p, 0)—whichever is most expedient. 

The surface T is said to satisfy a CA-condition with constant 
C\ > 0 if there is a positive number rj such that any two points ti and 
U of T of distance | ta — ti | less than rj can be connected on T by an 
arc whose length is smaller than ( l + d ) | ta — tx|. If T is a differential 
geometric regular closed (i.e. compact) orientable surface of class C l, 
imbedded in space, then T satisfies a CA-condition with every con
stant Ci>0. Also many unbounded surfaces have this property. 

THEOREM 2. If the bounding surface T satisfies a CA-condition with 
constant cu then the solution vector f(w, v) {minimizing Dirichlet's 
integral in the class U) has a continuous extension to the closure of each 
domain P a = {u, v; u2+v2<a2, v>0}> 0<a<l, belonging to class 
C**ÇPÙ.Herefa = 2(2+cà-*. 

THEOREM 2'. If T is a surface of class C1 as above, then the solution 
vector i{u, v) has a continuous extension to each domain P a , 0 < a < l , 
belonging to class C0'/3(Po). Here /3 is an arbitrary number in the 
interval 0<j3<£. 

The demonstration of Theorem 2 is based on the length-area 
principle in conjunction with Theorem 1 and a kind of sewing theorem 
involving the construction of a surface of bounded area with specific 
properties. In view of a well-known lemma of C. B. Morrey [12, pp. 
134-135], the inequality 

r I 1 C C S 2. 201 
D[l\ ^o, pj = — J J (tu + lv)dudv g Mp 

B(W0ÎP) for wo G T^ 0 < p < ô, 

where B(w0; p)={w; wGP, \w—w0\ < p } , is crucial. For WO = UQ 
+ivoE:7a only the case 0 < Î / 0 < P < Ô requires an elaborate proof. Set 
<£(r)=Z)[£; Uo, r]. For almost all r in v0<r<vo+à the following is 
true: 

(1) There are no branch points of S on the arc A r = {w = u0+reid; 
* < o < 7 r } , i . e . ^ ( ^ o + e l ' 0 ^ o f o r 0 < o < 7 r . 

(2) The derivative <t>'(r) exists and 

$'(') = f |&(wo + r«*)|V<». 
Jo 
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Choose ô, 0 <S < (1 - a ) / 2 , so that 

— I I (?« + tv) du dv < —( — ) r\ . 

We now assert tha t 2j8i$(r) ^ r $ ' ( r ) for almost all r in z j 0 0<flo+o. 
Assume that ^ ( r ) < 2/3i<ï> (r) for such a value. Then the limits 

r/ = lim $(u0 + *^*') and f" = lim ^(«0 + ^**) 

exist. r/ and r/' are points on T and 

| f" - f7 f S l\r) = ( ƒ ' I &(«o + re') \ ddX â x ƒ *ïî(«o + re")dO 

fr(«o + re )rdO = 7rr$'(r) < 2irPi$(r) < rj . 
o 

Thus the points f and f " can be joined on T by an arc A2 whose length 
is smaller than (l+Ci)Z(r). The closed contour consisting of the arcs 
Ar and A2 bounds a disc-type surface 2 of area 

i l ( 2 ) < ^ [ / ( f ) + ( l + ^ ( f ) ] f . 
47T 

If ç ' ^ ç " this surface can be given a representation]£ = {ic = tj(w); 
wÇiBiuo) r)}. Here the vector t)(w) is continuous in B{u0; r) and 
analytic in B(u0; r). Moreover—and this is the essential part— 
t)(u0+reid) =z(uo+reid) for O<0<7r. In view of the minimizing prop
erty of the surface 5 an application of Theorem 1 now leads to 

(2 + ci)2 / 2 + CA2 1 
D[r, «0, r] ^A(2)< - l\r) S ( -J r&(r) = r&(r). 

4TT \ 2 / 2J8I 

If ic' = ic" then, by a suitable application of the isoperimetric inequality» 
even D[ic; u0,] ^l2(r)/4w. Both conclusions contradict the assump
tion r#'(r) <2j8i*(r). Therefore, indeed, 2j8i*(r) £r$'(r) for almost all 
r. Integration between the limits r=v0+p and r=v0+5 gives 

—-) $(vo + 8) 
Vo + Ô/ 

where J f = (2/ô)^lDP [ j] . The inequality is proved. 
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Statements about the end points of the trace are possible if the 
Jordan arc T meets the surface T properly. T is said to satisfy a 
LO ( = lift-off) condition with constant c2>0 if there is a constant 
r0, 0 <To S 1 / 2 , such that 

f T | d% | â (1 + c2)dT[l(T)] for 0 < r g r0, 
•J o 

J | dj | ^ (1 + C2)dT[l(T)] for 7T ~ To S T < T. 

I f r is a regular curve of class Cl issuing from T (here assumed to be of 
class C1) a t angles not smaller than a > 0 , then we can set c2 = e 
+ (1— sin a) /sin a f or arbitrary €> 0. 

THEOREM 3. If the bounding surface T satisfies a CA-condition 
with constant c\ and if the arc T satisfies an LO-condition with constant 
c2l then the trace—image of the closed arc d"P—belongs to class C0,132; 
i.e. the vector i(u, 0) belongs for — l ^ w g l to C0-^. Here fi2-0<f52 

<2(2+c1)-*(2+c2)~*. 

Using well-known f acts about minimal surfaces (see [13, p. 238]) we 
conclude 

THEOREM 4. /ƒ, in addition to the assumptions of Theorem 3, the 
Jordan arc T satisfies a CA-condition with constant cz, then the vector 
t(u,v) is of^cto55C0^3(P).ff^i83 = min(2(2+C3)-2,2(2+Ci)--2(2+c2)"-2). 

THEOREM 4'. If T is a surface of class C1 as above and if T is a 
regular curve of class C1 issuing from T at angles not smaller thana>0, 
then the vector x(u, v) belongs to class C0,'y(P). Here y is any number in 
the interval 

0 < y < | sin2 a ( l + sin cx)~2. 

Weaker statements are possible if T is tangent to T a t its end points. 
ACKNOWLEDGMENT. The preceding research was sponsored by the 

Air Force Office of Scientific Research under AFOSR Grant No. 
883-67. 

BIBLIOGRAPHY 

1. R. Courant, The existence of a minimal surface of least area bounded by pre
scribed Jordan arcs and prescribed surfaces, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 
97-101. 

2. , The existence of minimal surfaces of given topological structure under 
prescribed boundary conditions, Acta Math. 72 (1940), 51-98. MR 2, 61. 

3. , On Plateau's problem with free boundaries, Proc. Nat. Acad. Sci. U.S. A. 
31 (1945), 242-246. MR 7, 68. 



i97o] SURFACES SATISFYING THE CHORD-ARC CONDITION 1245 

4. , Dirichlet's principle, conformai mapping, and minimal surfaces, Inter-
science, New York, 1953. MR 12,90. 

5. R. Courant and N. Davids, Minimal surfaces spanning closed manifolds, Proc. 
Nat. Acad. Sci. U.S.A. 26 (1940), 194-199. MR 1, 244. 

6. N. Davids, Minimal surfaces spanning closed manifolds and having prescribed 
topological position, Amer J. Math. 64 (1942), 348-362. MR 3, 250. 

7. S. Hildebrandt, Über Minimalflachen mitfreiem Rand, Math. Z. 95 (1967), 1-19. 
MR 34 #8287. 

8. W. Jager, Behavior of minimal surfaces with free boundaries, Comm. Pure. Appl. 
Math, (to appear). 

9. H. Lebesgue, Sur le problème de Dirichlet, Rend. Cire. Mat. Palermo 24 (1907), 
371-402. 

10. H. Lewy, On minimal surfaces with partially f ree boundary, Comm. Pure. Appl. 
Math. 4 (1951), 1-13. MR 14, 662. 

11. E. J. McShane, Parametrization of saddle surfaces with applications to the 
problem of Plateau, Trans. Amer. Math. Soc. 35 (1933), 716-733. 

12. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equa
tions, Trans. Amer. Math. Soc. 43 (1938), 126-166. 

13. J. C. C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amen 
Math. Soc. 71 (1965), 195-270. MR 30 #4200. 

14. 1 The behavior of minimal surfaces with free boundaries, Rend. Circ. Mat. 
Palermo (to appear). 

15. I. F. Ritter, Solution of Schwarz' problem concerning minimal surfaces, Univ. 
Nac. Tucumân Rev. Ser. A 1 (1940), 40-62. MR 3, 55. 

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455 


