CROSS SECTIONALLY CONNECTED 2-SPHERES ARE TAME

BY R. A. JENSEN¹

Communicated by Steve Armentrout, March 5, 1970

W. T. Eaton [4] and Norman Hosay [5] have independently shown that a 2-sphere S in E^3 is tame if each horizontal cross section of S is either a simple closed curve or a point. The purpose of this note is to indicate how to extend Hosay's argument to show that S is tame if each horizontal cross section is connected. This answers a question raised by Bing [2].

The author would like to thank L. D. Loveland for helpful suggestions.

The notation used here is as in [5]. Let $E_t = \{(x, y, z) \in E^3 | z = t\}$.

THEOREM. Let S be a 2-sphere in E^3 such that $S \cap E_t$ is connected (or void) for each t in E^1 . Then S is tame.

Let $J_t = S \cap E_t$. We suppose $\{t \mid J_t \neq \emptyset\} = [0, 1]$. The first four parts of Hosay's proof are concerned with showing that S is locally tame modulo $J_0 \cup J_1$ by showing that the complementary domains of S are locally simply connected at each point p of $S - (J_0 \cup J_1)$. For a round open ball U containing p he picks a certain map p taking a disk p into p

We first observe that since a separable metric space can contain only countably many mutually disjoint separators which are not irreducible, the set J_t , 0 < t < 1, is an irreducible separator of S (and hence of E_t) except for at most countably many values of t. Using Cannon's result [3] we know that each set J_t , 0 < t < 1, is a taming set. We next observe that if $\{J_i\}$ is a countable collection of taming sets on S the techniques of [1] can be used to construct an ϵ -map of Cl(Int S) into $Cl(Int S) - UJ_i$. (Proofs of these observations appear in [6].) Thus we may suppose that $h(D) \cap J_t = \emptyset$ unless J_t is an irreducible separator of E_t . This is the key to extending Hosay's argument.

In part (A) of [5] Hosay uses the fact that if $h(A_i^t)$ is a certain continuum in $h(D) \cap E_t$ then any two points of $h(A_i^t) \cap \text{Int } S$ can be

AMS 1969 subject classifications. Primary 5705; Secondary 5478.

Key words and phrases. Tame 2-spheres, tame surfaces, surfaces in E^3 .

¹ The results presented in this paper are a part of the author's dissertation at the University of Wisconsin, written under the direction of R. H. Bing.

joined by an arc in $E_t \cap U \cap \text{Int } S$. But this can still be done under our weaker hypotheses, since either $h(A_i^t) \subset \text{Int } S$ or else J_t is an irreducible separator of E_t and we can apply the lemma at the end of this paper, letting $E_t \cap \text{Int } S$ be G, $h(A_t^t)$ be C, and $E_t \cap U$ be N.

In part (B) we need to know that each component of $E_t \cap \text{Int } S \cap U$ is simply-connected. But this will always be the case as long as U is chosen small enough so that it does not contain J_t for any t in [0, 1].

The rest of Hosay's proof that Int S is locally simply connected at p can be used without comment.

To show that S is also locally tame at each point of J_0 and J_1 we note first that if J_0 , for example, is nondegenerate then it is a taming set [3]. Thus S would be locally tame at each point of J_0 . If J_0 is a point it is not hard to construct a tame arc piercing S at J_0 . (Details are given in [6].) Thus S would still be locally tame at J_0 . Similarly, S is locally tame at each point of J_1 . Thus S is tame.

We are finished when we prove the following lemma used above to enable part (A) of Hosay's construction to be carried out.

LEMMA. Suppose G is a complementary domain of an irreducible separator of the plane, and suppose C is a compact continuum in Cl(G). Then if N is any planar neighborhood of C each pair of points in $C \cap G$ can be joined by an arc in $G \cap N$.

PROOF. Let p and q be two points of $C \cap G$, and let J be the irreducible separator of the plane.

In general we may suppose that N is the interior of a disk with holes and Bd N is a finite collection of simple closed curves. The lemma follows when we show that Bd $N \cap G$ can not separate p from q in G.

From the unicoherence of the open disk we may conclude that if Bd $N \cap G$ separates p from q in G, then some component of Bd $N \cap G$ separates p from q in G. Suppose such is the case and call this component α . We will arrive at a contradiction.

Since $\operatorname{Cl}(\alpha) \subset \operatorname{Bd} N$ we know $\operatorname{Cl}(\alpha)$ does not separate p from q in the plane, E^2 . Since $E^2 - G$ does not separate them either we know from Janiszewski's Theorem that $(E^2 - G) \cap \operatorname{Cl}(\alpha)$ is neither connected nor void. Thus $\operatorname{Cl}(\alpha) - \alpha$ contains at least two points, and hence α is the interior of an arc on $\operatorname{Bd} N$, whose endpoints we call x and y.

Let γ be an arc in G from p to q which intersects α in exactly one point, where it pierces α . Pick connected neighborhoods N_x and N_y of x and y respectively which do intersect γ or C. Let G' be a complementary domain of J different from G. Since J is an irreducible separator x and y must be in Cl(G'). Thus G' intersects N_x and N_y . Hence

there is a simple closed curve K in $\alpha \cup N_x \cup G' \cup N_y$ which contains $\alpha \cap \gamma$. But now K must separate p from q since γ pierces it, yet the continuum C contains p and q and misses K. Thus the assumption that Bd $N \cap G$ separates p from q in G leads to a contradiction.

REFERENCES

- 1. R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 28 #3408.
- 2. ——, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J., 1966, p. 82. MR 34 #1974.
- 3. J. W. Cannon, Characterization of taming sets on 2-spheres, Notices Amer. Math. Soc. 15 (1968), 768. Abstract #658-163.
- 4. W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375-378. MR 39 #957.
- 5. Norman Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc. 75 (1969), 370-374. MR 39 #956.
- 6. R. A. Jensen, Cross sectionally connected spheres, Thesis, Univ. of Wisconsin, Madison, Wis., 1969.

University of Wisconsin, Madison, Wisconsin 53706

University of Miami, Coral Gables, Florida 33124