ON THE COHOMOLOGY OF STABLE TWO STAGE POSTNIKOV SYSTEMS

BY JOHN R. HARPER

Communicated by Norman Steenrod, February 2, 1970

Introduction. Let $\xi = (E, p, B, F)$ denote a two stage Postnikov system with stable k-invariant. We announce results about $H^*(\Omega E)$ as a Hopf algebra over the Steenrod algebra. Mod 2 cohomology is used exclusively. Unexplained notation is from [4] and [5]. I am grateful to D. Anderson, W. Massey, F. Peterson and H. Salomonsen for many useful remarks.

We make the following assumptions on ξ , in addition to those of [5, p. 38]. F and B are simply connected products of finitely many Eilenberg-MacLane spaces. The nonzero homotopy groups of the factors of B are infinite cyclic or cyclic of order 2^k , $k=1, 2, \cdots$. All factors of F have Z_2 (cyclic group of order 2) as their only nonzero homotopy group.

Results of [3], [4], [5] and [8] give $H^*(\Omega E) \cong R \otimes U(X')$. The isomorphism is as algebras over Z_2 and \otimes is over Z_2 . $R = R(\Omega \xi) = H^*(\Omega B)/\ker \Omega p^*$ and $X' = X'(\Omega \xi)$ is considered as known, [5, p. 54]. In general $H^*(\Omega E)$ does not split this way as a Hopf algebra over Z_2 . The new result is Theorem A. It gives $H^*(\Omega E)$ as a coalgebra over R. It also gives information on the extension problem represented by the fundamental sequence of $\Omega \xi$ [5, p. 54]. This use of the Hopf algebra structure is well known, [1], [5] and [6].

1. The main theorem. Consider the following diagram of unstable A-modules and A-maps. The squares are commutative.

(1)
$$X'(\Omega\xi) \stackrel{\alpha}{\leftarrow} Y''/\lambda Y'' \stackrel{\pi}{\leftarrow} Y'' \stackrel{e}{\rightarrow} \Omega Y,$$

$$Y \stackrel{f^*}{\longrightarrow} Z \stackrel{\rho}{\longrightarrow} Z'$$

$$\sigma_{B_0} \downarrow \quad \sigma_B \downarrow \quad \sigma' \downarrow .$$

$$\Omega Y \xrightarrow{\Omega f^*} \Omega Z \xrightarrow{\rho'} \Omega Z'$$

Here α is an A-isomorphism of degree -1; π , ρ and ρ' are natural projections; c is inclusion, and σ' is the obvious map. The remaining

AMS Subject Classifications. Primary 5550; Secondary 5534.

Key Words and Phrases. Postnikov system, stable k-invariant, Steenrod algebra, Hopf algebra, Massey-Peterson fundamental sequence.

maps and modules are as in [5, p. 63]. In particular $Y'' = \ker \Omega f^*$, Z' and $\Omega Z'$ are coker f^* and coker Ωf^* respectively.

Using (1) and (2) we associate with each homogeneous element $x \in X'(\Omega \xi)$ an element $w \in \Omega Z'$ as follows. Let $y \in \Omega Y$ such that $\alpha^{\pi}(y) = x$. Let $t \in Y$ such that $\sigma_{B_0}(t) = y$. Since $\sigma_B f^*(t) = 0$, $f^*(t) = \lambda z$ for some $z \in Z$. Let $w = \sigma' \rho(z)$. Note that the calculation of w just involves the Adem relations.

Proposition 1. w is a unique element of $\Omega Z'$.

PROOF. σ_{B_0} is a map of degree -1 and λ doubles degrees. Hence $\rho f^* | \sigma_{B_0}^{-1}(\lambda Y'') = 0$. This and looking at the choices involved in the definition of w give the result.

THEOREM A. There exists an element $e \in P(\Omega \xi)$ such that $\Omega i^*(e) = x$ and $\overline{\mu}_2(e) = q(w \otimes w)$. Here q is the map

$$\Omega p^* \otimes \Omega p^* : R(\Omega \xi \times \Omega \xi) \to P(\Omega \xi \times \Omega \xi).$$

The notation is [5, p. 63]. The proof uses the Serre spectral sequence in a manner similar to but more involved than arguments of [2] and [7].

REMARKS. 1. Theorem A amounts to calculating the homomorphism

$$X'(\Omega\xi)/\mathrm{im}\ \sigma_3 \to R(\Omega\xi \times \Omega\xi)/\mathrm{im}\ \overline{\mu}_1$$

in the exact sequence at the bottom of p. 63 [5]. (μ_i should be replaced by $\bar{\mu}_i$, i=1, 2, there.)

- 2. If degree x is odd, then w = 0. If degree x is even, it is quite possible for w = 0 and not have $x \in \text{im } \sigma_3$. An example is given by $B = K(Z_2, 2)$, $F = K(Z_2, 7)$ and k-invariant $\text{Sq}^4 \, \text{Sq}^2$. This example was also discovered by Massey.
- 3. Let $\{x_i\}$ be a homogeneous Z_2 -basis for $X'(\Omega \xi)$. Let $\{e_i\}$ $\subset P(\Omega \xi)$ satisfy Theorem A with $\Omega i^*(e_i) = x_i$. Then, by results of [4] and [5], $\{1\} \cup \{e_i\}$ form a simple system of generators for $H^*(\Omega E)$ as an algebra over R. Thus Theorem A calculates the coproduct of $H^*(\Omega E)$ considered as coalgebra over R. (R acts on $H^*(\Omega E) \otimes H^*(\Omega E)$ via $q\mu_1$.)
- 4. Let $\{x_i\}$ and $\{e_i\}$ be as in Remark 3. Let $\theta \in A$ and consider $\sum x_j = \Omega i^*(\theta e_i)$. Then $(\theta e_i + \sum e_j) = \Omega p^*(r)$ for a unique $r \in R$. The naturality of fundamental sequences with respect to loop multiplication and suspension gives much information about r. For example a unique element $[r] \in R/S$ is determined by the formula

$$q\bar{\mu}_1([r]) = \bar{\mu}_2(\theta e_i + \sum e_j).$$

Here $S \subset R$ is the A-submodule of primitives and $\mu_1: R/S \to R \otimes R$ is considered as an A-map. It is well known to be a monomorphism. A similar formula can be obtained using suspension. We remark that if F and B are 2-connected and R is an exterior algebra over Z_2 , then such formulae and the knowledge of $P(\Omega^2 \xi)$ as an A-module permit a complete calculation of $P(\Omega \xi)$ as an A-module. We defer details to a longer paper.

References

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530.
- 2. J. R. Harper, Stable secondary cohomology operations, Comment. Math. Helv. 44 (1969), 341-353.
- 3. L. Kristensen, On the cohomology of two-stage Postnikov systems, Acta Math. 107 (1962), 73-123. MR 25 #4525.
- 4. W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47-65. MR 32 #6459.
- 5. ——, The mod 2 cohomology structure of certain fibre spaces, Mem. Amer. Math. Soc. No. 74 (1967). MR 37 #2226.
- 6. R. J. Milgram, The cohomology over the Steenrod algebra of some two stage Postnikov systems, Quart. J. Math. 20 (1969), 161-169.
- 7. F. P. Peterson, A note on H-spaces, Bol. Soc. Mat. Mexicana (2) 4 (1959), 30-31. MR 22 #11393.
- 8. L. Smith, The cohomology of stable two stage Postnikov systems, Illinois J. Math. 11 (1967), 310-329. MR 34 #8406.

THE UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14627