ON PARALLELISM IN RIEMANNIAN MANIFOLDS

BY ALAN B. PORITZ1

Communicated by Philip Hartman, December 15, 1969

The definition of parallelism along a curve in a Riemannian manifold extends to higher dimensional submanifolds. This note is to announce a local existence and uniqueness theorem, Theorem B(p), for the extended definition. A proof of the theorem in the C^{∞} category will appear in [2]. A proof, in the C^{ω} category, under somewhat weaker conditions, will appear in [1]. A global C^{∞} version under stronger assumptions appears in [3]. This note ends with a sketch of a new proof of Theorem B(p).

Let $g: N^p \to M^m$ be a (not necessarily isometric) smooth (that is, C^∞ or C^ω) immersion of Riemannian manifolds. Let E be a euclidean vector bundle over N and F a euclidean vector bundle over M. A vector bundle map $G: E \to F$ is a vector bundle isometry along g provided that G sends the fibers E(n) isometrically into the fibers F(g(n)). When E and F are the tangent bundles $(T(N^p))$ and $T(M^m)$, G is called a tangent bundle isometry (T.B.I.) along g. The normal bundle to g T.B.I. g is the g dimensional vector bundle g over g whose fiber over g is the orthogonal complement g over g whose fiber over g is the orthogonal complement g for g and g for g in g for g

$$\langle \Pi_G(v)x, y \rangle_n = - \langle \nabla_{T_G(x)}G(Y), v \rangle_{g(n)}.$$

The definition is independent of the choice of Y.

G is parallel along g if $(trace) \cdot II_G : G^{\perp} \rightarrow R$ vanishes identically. It was shown in [1] that this definition is a generalization to higher dimensional immersed submanifolds, of the classical notion of parallelism along a curve. The significant facts are the following.

Every unit vector field along a curve $g: N^1 = (a, b) \rightarrow M$ corresponds in a natural way to a T.B.I. along g. Under this correspondence, parallel vector fields are paired with parallel T.B.I.'s.

An immersion $g: N^p \rightarrow M^m$ is isometric if and only if its tangent map

AMS Subject Classifications. Primary 5372, 5304, 5370, 5374, 3503; Secondary 3596, 5730, 5720.

Key Words and Phrases. Parallelism, least area variational problem, minimal immersion, vector bundle isometry, parallel tangent bundle isometry, second fundamental form, normal bundle, Cauchy-Kowalewski Theorem.

¹ Partial support by NSF Contract GP-4503 was received during the preparation of this paper.

 $Tg:TN\rightarrow TM$ is a T.B.I. In such a situation, g is a minimal immersion if and only if Tg is parallel along g. Thus for every p, $1 \le p < m$, the critical manifolds of the calculus of variations problem for minimal p dimensional "area" are exactly the p dimensional autoparallels (i.e. the isometric immersions whose tangent maps are parallel).

Below, the same letter is used to designate a distribution on a manifold and the subbundle of the tangent bundle that it determines. If E is a vector bundle over Y and $i:X \rightarrow Y$ is a smooth map then $i_*:i^*E \rightarrow E$ is the induced map of the induced bundle.

THEOREM B(p). Let $g: N^p \to M^m$ be an (not necessarily isometric) immersion of Riemannian manifolds. Let H be a (p-1) dimensional distribution on N^p and (N^{p-1}, i) a homeomorphically embedded integral manifold of H. Suppose there is given as initial data:

- 1. $G^{p-1}: H \rightarrow T(M)$, a vector bundle isometry along g, and
- 2. $G^p:i^*T(N^p) \to T(M)$, a vector bundle isometry along $g \cdot i$.

It is assumed that G^{p-1} and G^p are compatible:

$$G^p \mid_{i*H} = G^{p-1} \cdot i_* : i*H \rightarrow T(M).$$

Then, if the data is all C^{ω} , there is a neighborhood U of N^{p-1} in N^p and a unique parallel C^{ω} T.B.I. $G: T(U) \rightarrow T(M)$ that extends the initial data:

$$G|_{H} = G^{p-1} \colon H \to T(M) \text{ along } g|_{U} \text{ and } G \cdot i_{*} = G^{p} \colon i^{*}T(N^{p}) \to T(M) \text{ along } g \cdot i.$$

Theorem B(p) is a local extension of the classical theorem that asserts the existence and uniqueness of a parallel unit vector field along a curve $g: N^1 = (a, b) \rightarrow M$ in terms of initial data at a point $N^0 \subset N^1$. In [1], a procedure is developed that proves Theorem B(p) and at the same time the classical theorem on the local existence and uniqueness of a C^{ω} minimal immersion in terms of initial data on a codimension one submanifold. The procedure makes use of certain differential forms on the p plane bundles over N and M. The solutions of both problems appear as integral manifolds that pass through the initial data. Their existence and uniqueness is a consequence of the Cartan-Kahler Theorem. Here, we sketch a proof of Theorem B(p) using the Cauchy-Kowalewski Theorem directly.

Let $\tilde{n} \in N^{p-1}$. The assumptions on N^{p-1} and H imply the existence of a coordinate neighborhood (V, z_1, \dots, z_p) of \tilde{n} in N^p where $\|\partial/\partial z_p\| \equiv 1$, $N^{p-1} \cap V$ is the slice $z_p = 0$ and the integral manifolds of the distribution $\perp H$ are the slices $z_i = \text{constant } i = 1, \dots, p-1$. Because of the compatibility condition on G^{p-1} and G^p it may also be assumed that there are fields of orthonormal frames

 $\{Z_1, \dots, Z_p = \partial/\partial z_p\}$ on V and $\{Y_1, \dots, Y_m\}$ along $g|_V$ with the property that a C^{ω} T.B.I. G defined along $g|_V$ extends the initial data along $g|_V$ if and only if its matrix representation (r_{ki}) with respect to these frames $(G(Z_i) = \sum_k r_{ki}, Y_k i = 1, \dots, p)$ satisfies the equations

$$r_{ki}=\delta^{ki}, \qquad k=1,\cdots,m, \quad i=1,\cdots,p-1,$$

$$r_{1p}=,\cdots,=r_{p-1p}=0 \qquad \qquad \text{on } V$$

and

$$r_{pp} = 1, r_{p+1p} = 1, r_{p+1p} = 1, r_{mp} = 0$$
 on $V \cap N^{p-1}$.

It follows that the T.B.I.'s G that extend the initial data on V are in bijective correspondence with the m-p tuples $(r_{p+1p}, \dots, r_{mp})$ of C^{ω} functions on V that vanish on $N^{p-1} \cap V$. The condition that G be parallel along $g \mid_{V}$ is expressed by the vanishing, for each $n \in V$, of the projection of $\sum_{i=1}^{p} \nabla_{Z_{i}(n)} G(Z_{i})$ into $\bot G(N_{n}^{p})$. On some, perhaps smaller, neighborhood of \tilde{n} this condition is equivalent to the Cauchy-Kowalewski system:

$$0 = \left\langle \sum_{i=1}^{p} \nabla_{Z_{i}(n)} G(Z_{i}), Y_{j}(n) \right\rangle$$

$$= \left\langle \sum_{i=1}^{p-1} \nabla_{Z_{i}(n)} Y_{i}, Y_{j}(n) \right\rangle + \sum_{l=p}^{m} r_{lp} \langle \nabla_{Z_{p}(n)} Y_{l}, Y_{j}(n) \rangle + \frac{\partial r_{jp}}{\partial z_{p}} (n),$$

$$j = p + 1, \dots, m.$$

Thus, on some sufficiently small neighborhood $V^{\bar{n}}$ of any point $\bar{n} \in N^{p-1}$, there is a unique C^{ω} parallel T.B.I. $G^{\bar{n}}$ that extends the initial data along $g|_{V^{\bar{n}}}$. A neighborhood U of N^{p-1} in N^p can then be constructed on which there is a unique C^{ω} parallel T.B.I. G that extends the initial data along $g|_{U}$ so that for each $\bar{n} \in N^{p-1}$: $G|_{U \cap V^{\bar{n}}} = G^{\bar{n}}|_{U \cap V^{\bar{n}}}$.

BIBLIOGRAPHY

- 1. A. Poritz, A generalization of parallelism in Riemannian geometry; The C^{ω} case, Trans. Amer. Math. Soc. (to appear).
- 2. —, A generalization of parallelism in Riemannian geometry; The C^{∞} case, J. Differential Geometry (to appear).
- 3. ——, A global existence and uniqueness theorem for generalized parallelism, Global Analysis, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R. I., 1968, pp. 293-298.

University of Pennsylvania, Philadelphia, Pennsylvania 19104