ON LOCAL SOLVABILITY OF LINEAR PARTIAL
DIFFERENTIAL EQUATIONS

BY FRANGOIS TREVES

The title indicates more or less what the talk is going to be about.
It is going to be about the problem which is probably the most
primitive in partial differential equations theory, namely to know
whether an equation does, or does not, have a solution. Even this is
meant in the most primitive terms. I would like to begin by explain-
ing what the terms are.

As you all know, the really difficult analysis these days, and per-
haps always, is the global analysis. Well, the problem that I am going
to discuss is purely local—in the strictest possible sense: we would
like to find out if a linear partial differential equation, with coeffi-
cients as smooth as you wish, admits locally a solution. Obviously,
in this connection, negative results are very important: and negative
results about local solvability have global implications. But of course
positive results have also their importance. Let us state precisely
what is the problem. The partial differential equation under study
will be

0 Pu=f

and we would like to know whether for given f, defined in the neigh-
borhood of some point, there are solutions #. This is really too vague,
so that the first thing we shall do is to make it a little more precise.
Let us say that the differential operator P is defined in an open set
Q of the Euclidean space R* and that we wish to solve the equation
in Q; suppose that the right-hand side f is very regular, say f& €*(Q).
Then you would like to know whether there are solutions (defined
in Q). Now, the experience we have acquired since 1950 in the field
of linear partial differential equations tells us that if you pose the
problem in this way, you will encounter very serious difficulties of
global nature. After all, @ is a manifold, in general it possesses a
boundary, or points at infinity, and the fact is that the behaviour
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of f at the boundary, or at infinity, may have an influence on the
answer to our question. We want to avoid this, for this is much too
difficult a problem for us to handle at the present time. We shall
therefore assume that f has the best possible behaviour at the bound-
ary, which means vanishes identically in the neighborhood of the
boundary. In other words, f has compact support in Q. Let me point
out that local solvability theorems have been known for a long time.
The most famous of them, which even the algebraists know, is the
theorem of Cauchy-Kovalevska. If Q is small enough, if P has an-
alytic coefficients, if f is analytic, and if the standard conditions on
characteristics are satisfied, then there always is an analytic solution.
The kind of data I shall consider are of a completely different nature:
simply by requiring that they have compact support, I exclude the
analytic case. In a sense one considers that the analytic case is sep-
arate and we want to study the €> case. In summary we try to solve
the equation Pu =f for arbitrary right-hand sides f, @ with compact
support in €. Now the question is as to what kind of solution I am
willing to consider. Well, to start with, I would like to have the best
kind, say @= solutions. But this turns out to be a difficult request to
satisfy, at least for the time being—so that we shall ask for any
solution at all, were it to be of the worst kind. What are the worst
possible solutions? This depends on your viewpoint. In today’s lec-
ture I will consider that distributions are bad enough. Thus we shall
seek solutions which are distributions in Q. Let me mention that you
could substantially enlarge the inventory of possible solutions, for
instance by allowing what are called Sdto hyperfunctions or, when
the coefficients of the differential operator P are analytic, by consider-
ing analytic functionals. Later on, I hope to say a few words about
these aspects.

We have not gone, yet, far enough along the road to simplification:
one further step remains to be taken. For the problem, as we have
stated it so far, is not local enough. The set Q@ has been kept fixed,
and this is too rigid. We shall allow ourselves to choose 2 at will—
provided that it ranges over the collection of open neighborhoods of a
given point xo. We consider a point x, of R* and we ask the following
question: Is there an open set Q containing xo such that, given any func-
tion fE C® with compact support contained in Q, there is a distribution u
in Qsatisfying the partial differential equation Pu =f in Q? If the answer
to this question is yes, we shall say that the equation Pu =f is locally
solvable at x,. The problem is then to find, if possible, necessary and
sufficient conditions in order that a given linear partial differential
equation be locally solvable at a given point.
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Now that I have stated the problem, let me say that the talk will
mostly be historical. But some of it will be very recent history, be-
cause in the last four months the problem, or at least an important
part of it, has been nearing complete solution, and it is the progress
towards its solution that I would like to describe.

The problem discussed here originated after Hans Lewy, ca. 1956,
exhibited his now famous example of a linear partial differential
equation in the three-dimensional space which is nof locally solvable
at any point of R3. Lewy’s operator is

d i) 7]
axl 6x2 6x3
(Allow me to insert a personal anecdote: in 1955 I was given the
following thesis problem: prove that every linear partial differential
equation with smooth coefficients, not vanishing identically at some
point, is locally solvable at that point. My thesis director was, and
still is, a leading analyst; his suggestion simply shows that, at that
time, nobody had any inkling of the structure underlying the local
solvability problem, as it is now gradually revealed.)

Before Lewy’s example had been discovered, there were many posi-
tive cases which were known. From the viewpoint of later history,
the most interesting was presented in Hérmander’s thesis (1955);
I shall describe it soon. But even prior to this, there were many known
cases of local solvability. Let me describe rapidly what was known,
on the subject of local solvability, prior to Hérmander. First of all,
every equation belonging to any one of the three “classical types”
was known to be locally solvable at any point of its domain of defini-
tion. By the classical types I mean the elliptic equations, like La-
place’s, the parabolic ones, like the heat equation, the hyperbolic,
like the wave equation. For decades the study of partial differential
equations had been essentially limited to these, and very nice and
very important results about them had been obtained. In particular,
as I have said, they all are locally solvable at any point. It is worth
underlining that the solvability is (in general) strictly local: in gen-
eral, elliptic equations are not globally solvable; parabolic and
hyperbolic equations, under reasonable hypotheses, fare slightly bet-
ter and are usually solvable in every open set with compact closure.

There was another important class of linear partial differential
equations for which solvability was known, as a matter of fact, solva-
bility in any bounded open subset of the Euclidean space, and these
were the equations with constant coefficients. In particular they are
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all locally solvable. Thus the relevant case, in the study of local
solvability, is the case of variable coefficients. Of course, you realize
that local solvability is an intrinsic property, coordinates indepen-
dent, whereas the property of having constant coefficients depends on
the coordinates in which the differential operator is expressed. If you
change the coordinates, the coefficients will not usually remain con-
stant.

We come now to the “positive” local solvability theorem in Hor-
mander’s thesis. Consider a linear partial differential operator in #
variables, which I must, for the first time, write down explicitly:

P(x, D) = X ca(%) D",

lalsm

where I have used the standard notation: a=(oy, * * +, au), |a| =
L R

2n

Da:‘DaIl"'Dn’ Dj = — /(- 1)3/d% (j=17"'yn)°

The coefficients c.(x) are complex-valued €% functions (in fact,
Hoérmander's result is true under much weaker regularity assump-
tions).

The condition in Hérmander’s theorem bears only on the principal
part of the operator, i.e., on its leading terms: today one would say
on its principal symbol:

Pu(%,8) = 3 cal®)tl - & (EQEER, E=0).

la|=m

This is a homogeneous polynomial of degree m with respect to the
variables £ (with coefficients depending on x).

It has been a standard practice, in the study of linear partial dif-
ferential equations, to drop the lower order terms. But when is it
permitted to do so? To this question there is a kind of philosophical
answer, it is not a theorem but more like a conjecture that is to be
checked in each instance: you may neglect the lower order terms when-
ever the real characteristics are simple. This means that the cone of
zeros of the equation

2 Pu(x, 8) =0

(called the characteristic equation) has no singularities in R* (we ex-
clude the origin: at any rate the proper set-up for studying (2) is the



556 FRANCOIS TREVES [May

projective space). This can be rephrased by saying that, for all
§ERm 50,

grad; Pn(x, £) # 0.

Indeed, by Euler's homogeneity formula, whenever grad; P.(x, £)
vanishes so does P, (x, £) and such a zero is perforce multiple. In all
this x is kept fixed (but arbitrary).

There are cases where you cannot drop the lower order terms. The
best known examples are the heat operator

3) 9%/9x? — 3/9¢
and the Schrédinger operator
4) d%/ax? — (1/4)(8/at).

In both cases the principal symbol is £2; the characteristics are double.
It is clear that consideration of the principal symbol alone will not
give you sufficient information: for instance it will not enable you to
distinguish between the heat equation and Schrodinger’s. It is worth-
while pointing out, however, that consideration of the principal sym-
bol or of some symbol which can be called principal (by means of a
modified homogeneity) has been an almost universal practice in the
study of PDE'’s. This is true about the heat and the Schrédinger equa-
tions: it is only that one replaces the homogeneity with respect to all
variables (as manifested in P,(x, £)) by a separate homogeneity, e.g.,
of degree 2 in x and degree 1 in ¢ as in (3) and (4). Keeping this in
mind one sees easily that most results about linear PDE’s are obtained
by dropping the lower order terms. One important exception is the
theory of linear PDE’s with constant coefficients (and there are a few
more, of lesser importance).

It should also be pointed out that the principal symbol Pa(x, £) is
a kind of “invariant” attached to the equation (1): it is coordinates
invariant in the sense that it is a well-defined function on the cotan-
gent bundle. It is the only simple “invariant” attached to the equa-
tion (if one excepts the zero-order terms), the others are more compli-
cated and have not yet been much used, to my knowledge.

Let us return to the solvability result in Hérmander’s thesis. As I
said the hypotheses concerned only the principal symbol. In keeping
with the general principle stated above, the first assumption was that
the real characteristics, if there were any, be simple. Hormander put a
label on differential operators which have this property, he said they
are of principal type; the label has stuck. The second assumption was,
in a sense, more strange: the coefficients c.(x) in the principal part
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(hence, Ial =m) had to be real. Under these two hypotheses, there is

local solvability—at any point in whose neighborhood they hold.
The solvability is strictly local; the exceptions to global solvability

are trivial: the simplest is probably the rotation operator in R?\ {0 },

xl(a/(')xz) - xg(a/axl)

It satisfies all of Hérmander's conditions, but it is certainly not glo-
bally solvable in any annular domain surrounding the origin.

Now, if we go back to Lewy’s operator, we see that it has first order.
Any first order operator whose principal part does not vanish identi-
cally at any point has simple real characteristics, since the gradient
with respect to £ of its principal symbol is constant with respect to £.
Of course, the coefficients in Lewy’s operator are not real: otherwise
there would be a contradiction. On the other hand, it comes very
close tohaving constantcoefficients. Remember, however, thatconstant
coefficients PDE’s are locally (even globally) solvable. In Lewy’s
operator all coefficients are constant except one, and that one is
linear in x1, x,. Note also that it is closely related to the Cauchy-
Riemann operator—which, of course, is solvable. In a sense, Lewy’s
operator is barely on the edge of nonsolvability. But on the other
hand, it has that remarkable property of not being locally solvable at
any point.

The negative result of Lewy and the positive one of Hérmander,
mentioned above, called for some kind of general explanation. The
beginning of such an explanation was provided by Hérmander in
1959 with a necessary condition of local solvability. This work, as
much as the work of Lewy, is crucial for the subsequent history—for
two reasons. First of all, the nature of the necessary condition, found
by Hérmander, is remarkable and opens the way to much further
investigation. Second, the techniques used in its proof were very
original, very striking, and are still the essential techniques one uses,
with some improvements and modifications. In the necessary and
sufficient conditions known today, the proof of the necessity follows
the pattern given by Hérmander in 1959.

Let me state the condition. Clearly, both the positive result of
1955, which required the coefficients of the principal part to be real,
and Lewy’s example show that the nonreal nature of these coefficients
is essential if we are to have nonsolvability. Let me add that the proof
of the positive result used a priori estimates in the space L?; these
could be established because one had control of the commutator
[Pm(xyD), P, (x, D) ] = Pp(x, D) Pn(x, D) — Pp(x, D) Pp(x, D) (Pn(x, §)
is the homogeneous polynomial of degree m in £ obtaining by replac-
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ing each coefficient of P,(x, £) by its complex conjugate). When the
coefficients of P,, are real, the above commutator is identically zero,
but later work of Hérmander, concerning what he called principally
normal equations, confirmed the impression that control of the com-
mutator leads to very good L? estimates. Now, [Pn(x, D), Pa(x, D)]
is a differential operator of order 2m —1; familiarity with the deriva-
tion of the estimates and the fact that the real characteristics of P
are simple (which enables one to neglect lower order terms) strongly
suggest that what is relevant, in the commutator, is its principal part,
Com—-1(x, D). Indeed, Hérmander’s necessary condition states that if
P is locally solvable at the point x, then, for all ¢ER,, £5%0,

Pu(x, £) = 0= Copn(x, £) = 0.

This is the necessary condition of local solvability. When one en-
counters it for the first time, I am certain that it must seem almost as
mysterious as Lewy’s example. Of course, it is not satisfied, at any
point x = (x!, x2, x*), by Lewy’s operator: for it was the behaviour of
this operator that Hérmander wanted to “explain.” The simplest
operator which does not satisfy it (at every point of the line x1=0) is

) d/8x' + /(— 1)x'(9/3x?)

(for points where x50, (5), viewed as an operator in R?, is elliptic,
hence locally solvable).

In a sense, Hormander’s necessary condition is not really satisfac-
tory: for one thing, it lacks a conceptual basis; for another, one would
like to know how far it is from being sufficient. At any rate, the next
natural step was to seek necessary and sufficient conditions for local
solvability. In 1962 Louis Nirenberg and I decided to tackle this
problem;itlooked rather formidable and we set ourselves very modest
goals. We decided to look at a single first order linear partial differen-
tial equation, at least as a beginning. Note that such an equation will
necessarily have simple characteristics—provided that the coefficients
of its principal part do not vanish simultaneously at some point.

We had a starting point, namely Hérmander’s necessary condition,
exemplified, in particularly simple form, by (5). That condition led
quite naturally to studying the commutators, not only the first one,
[Lo, Zo] (I am now denoting by L, the principal part of the first

order linear partial differential operator under study), but all the
successive ones,

[Zo, [Lo, Lo]l,  [Lo, [Lo, [Lo, Lo]]], etc,

and also, perhaps, those where a number of L, have been replaced by
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L,. Whatever conjecture one could come up to, it could always be
tested on the operators

<] Ie]
6 _— — () —, £=0,1,2, -
) Py + +/( ) (xh) o

What did we know about these operators? When k=0, it is essentially
the Cauchy-Riemann operator, everywhere solvable; when k=1,
we get (5), which is not solvable in any open set intersecting the line
x1=0. Of course, when £>1, Hérmander’s necessary condition would
not provide any more information. But an easy modification of its
proof shows that (6) is not solvable in any such open set when k is
odd. On the other hand, when & is even, (6) is locally solvable (at any
point)—for a very simple reason: namely that one can write explicit-
ly, by a modification of Cauchy’s formula, a solution to the corre-
sponding equation (1). I will give, a little later, a different proof of
this fact, a proof which ought to throw some light, I hope, on the
question of solvability.

The facts known about (6) raise the question of the relation be-
tween the number % and the various commutators of Lo and Lo. It is
convenient, at this point, to modify a little bit our approach and
instead of looking at the complex vector fields Lo and L,, to look at
the real vector fields 4 =Re Lo, B=1Im L,. In the case of (6),

A = 3/, B = (x1)%9/dx2.

Let us then set Ci=[4, B], Cpu=[4, C,] (p=1, 2, - - - ); these are
real vector fields; let us denote by C,(x, £) the symbol of C,. In the
case of (6), :

k

Colx, §) = m (#)2(iks)  ifp Sk,

=0 if p > E

Consider a point (x, £) such thatx!=0, £, =0, £:50. At any such point,
the symbols of 4, B and of every C, for p <k vanish; Ci(x, £) does
not. This provides a characterization of the integer £ which seems not
to depend on the peculiarities of the example (6). The concept can
easily be extended to higher order equations. Indeed, let 4(x, D)
(resp. B(x, D)) denote the real (resp. imaginary) part of Pn,(x, D).
We may form the successive commutators or, rather, the principal
parts of these commutators:

Ci(x, D) = principal part of [4 (%, D), B(x,D)],
Cy(x, D) = principal part of [4(x, D), Cp_a(x, D)]  for p > 1.
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We look now at the symbols of all these operators, in (x, £)-space
(¢ must always be different from zero), and with every point (x, &)
we associate a number ko(x, £): this is the least integer k such that
Ci(x, £)#0. We agree that ko(x, £) is taken to be zero whenever
P,(x, £) 0. Then, in analogy with what happens in the case (6),
we shall conjecture that the parity of all these numbers ko(x, £) de-
termines whether there is local solvability in the (open) set where the
point x ranges.

Well, this approach cannot possibly lead to the full answer. Indeed
it has several serious defects: for one, it assigns a privileged role to the
real part 4 (x, D), and this is inadmissible, since A and B can be inter-
changed by multiplying P, by v/(—1) ; such a multiplication certainly
cannot affect solvability. Also the approach will completely fail if all
the commutators happen to vanish at some point (x, £), as in the
example

(™ 0/dx' + +/(—1) exp (= 1/(2")?)9/ 9"

There is a way around the latter difficulty; this is a very important
observation, which will also allow us to eliminate the first defect we
mentioned. It has to do with the most classical part of PDE theory,
the part that goes back to Lagrange, Hamilton, Jacobi. When dealing
with functions such as 4 (x, £), B(x, &), etc., defined (and smooth) in
the (x, £)-space (in the cotangent bundle as we say now), one can
introduce the Hamilton-Jacobi equations which, for 4, e.g., read

dx/dt = grad; A(x, £),
dt/dt = — grad, A(x, £).

®

I am taking 4 here, but I could as well consider B, C,, etc. Note how-
ever that in our examples (5), (6), (7) the gradient with respect to £
of A (x, £) did not vanish at any point (x, £) under consideration. Our
basic hypothesis, that P is of principal type, means that given any
point (x, £2), £950, either grad; A or grad; B does not vanish at that
point, or that none does. We may assume that grad; 4 (x,, £%) 0. In
this case, the (unique) solution (x(£), £(¢)) of (8) such that x(0) =x,,
£(0) =£° describes a true curve in (x, £)-space whose pro’ection on
the x-space is, in fact, a curve. Let us denote by I'4(xo, £°) the integral
curve of (8) through (x, £9) in the (x, £)-space; it is often called the
bicharacteristic strip of A through that point. It follows at once from
the form of (8) that the function A4 (x, £) must be constant along such a
curve. Thus, if we assume that A4 (x, £°) =0, we will have 4 =0 on
the whole of I"4(xo, £°). In this case we shall refer to I'4(xo, £°) as the
null bicharacteristic strip of 4 through (x,, £°).
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The relevance of these bicharacteristic strips from our viewpoint is
due to the following fact: an immediate computation shows that the
symbol of the first “commutator” Ci(x, D), the principal part of
[4(x, D), B(x, D)] is given by

8 = S 50 o0 — 5 ) o (5,0
X, = - &, - &, - % — %, ’
‘ = \og; o ™
that is,
Cl(x) E) = (dB/dt)(xr E)!

where d/dt denotes the differentiation in the direction tangential to
the bicharacteristic strip of 4 through the point (x, £). By iteration,

C, = d»B/d.

Let us then suppose that P, (x, £) =0, that is, that both 4 and B
vanish at (xo, £9). Let us look at the function B(x, £) restricted to the
null bicharacteristic strip of A through (xo, £°), Ta(xo, £°). Hoér-
mander’s necessary condition can be restated by saying that if the
equation Pu=f is locally solvable at x, then the first derivative of B
along T'4(xe, £%) must vanish at (xo, £°). In the case (6) where, say
£=(0, 1) and x5 =0, we see that there is local solvability if the first
derivative of B along I'4(xo, £°) which does not vanish is of even order,
and that there is no solvability if this derivative is of odd order. But
there is a way of rephrasing this property which does not rely on the
fact that the zero of B(x, £) along T'4(xo, £°) is of finite order, and
which therefore enables us to extend the property to equations such
as (7): namely, that

(9) B(x, £) does not change sign at (xo, £°) along the null bicharacteris-
tic strip of A(x, &) through that point.

We could now make the conjecture that local solvability of the equa-
tion Pu=f in the open set Q is equivalent with the fact that (9) is
valid for all x&Q and all £2E R», £ 0—if it were not for the fact
that the statement (9) is blatantly dissymmetric in A and B. We
shall therefore symmetrize in the following fashion:

(10) Let x,EQ, ECER,, £°5#0, be such that Pn,(xo, £)=0. Let 2z be
any complex number such that

grad; Re(zPn,) # 0 at (%0, £9).

Then the function Im(zP,)(x, £) does not change sign at (xo, £°) along
the null bicharacteristic sirip of Re(zPn)(x, £) through this point.

Clearly, solvability of Equation (1) is unchanged if we substitute
2P, 2#0, for P. Condition (10) may seem somewhat awkward, as it
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involves all complex numbers z5£0. But the remarkable fact is that,
essentially,! it is true for all numbers z5%0 as soon as it is true for at
least one of them. More precisely:

THEOREM 1. Let q(x, £) be a complex-valued function of (x, £), de-
fined, C* and nowhere vanishing in some open neighborhood of (xo, £°).
Let us suppose that neither grads A nor grade Re(qPm) vanish at (xo, £°).
Then, if Property (9) holds, the analogous property, where Pn(x, E) is
replaced by q(x, £) Pn(x, £), also does.

This was proved in the first order case (i.e., m=1) in [6]; it is
proved for arbitrary m in [7] under the additional assumption that
any change of sign of B along a null bicharacteristic strip of 4 must
occur at a zero of finite order of B (along that strip).2 Let me add
that these proofs are by no means trivial.

If we take Theorem 1 into account and keep in mind that, at any
point (x, £), either grad; 4 (x, £) or grad; B(x, &) are 20, we see that
the validity of Property (10) for all xoERQ, £°E R, £°540, can be re-
phrased as follows:

(11) Re Pn(x, &) does not change sign along any null bicharacteristic
of Im Pn(x, &) (lying over Q) and Im P,,(x, £) does not change sign along
any null bicharacteristic strip of Re Pn(x,£).

We have tacitly agreed not to speak of a null bicharacteristic strip
of a function of (x, £) unless the gradient with respect to £ of this
function does not vanish anywhere on the strip.

We may now formulate the main conjecture:

CONJECTURE. The equation Pu=f is locally solvable at every point of
Q if and only if (11) holds.

This is the conjecture which Nirenberg and I were led to make, in
1962. Note that it is compatible with the positive result in Hérman-
der’s thesis, where the coefficients of P,(x, £) had to be real, i.e.
Im@™P,,(x, £)) =0. Soon after, we were able to prove that it indeed
held for first order differential equation—with a “minor” qualification:
the necessity of Condition (11) was established only in the case where,
along the null bicharacteristic strips of 4, the changes of sign of the
function B occurred at zeros of finite order (as a matter of fact, we
could prove necessity even if some changes of sign occurred at zeros of
infinite order, but not in full generality: this is still an open question).
This is not to say that B could not have zeros of infinite order, but
only that B could not change sign at such a zero; for instance, B could

1 Not “essentially” but “truly”; see footnote 2.
2 In [7] Theorem 1 is proved in full generality: the hypothesis about the changes
of sign of B is removed.
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very well vanish identically on a null bicharacteristic strip of 4, as in
the operator

/0! + +/(— 1)2%9/da,

Of course, the case of analytic coefficients was completely settled; in
this case, Condition (11) is necessary and sufficient—without any
qualification.

This was the state of affairs in 1963. Since then, until recently,
nothing much has happened. We could not extend our result to higher
order equations. We could not handle the lower order terms. This was
due to a certain feature in our treatment of the first order case. I
should say that the obstruction was on the side of the sufficiency
proof. As far as necessity of (11) was concerned we had the feeling
that it was, and would remain within our reach, that all we had to do
was, some day, to sit down and muddle through the technicalities,
and we would get what we expected. But not so with sufficiency!
Recent experience has confirmed that these were sound feelings.

I would like to explain what the obstruction was, for it had an im-
portant implication concerning first order equations. The proof of
sufficiency was based on an estimate of a quite unusual nature, and
we could not see, we still cannot see, how to extend it to higher order
equations. Let me describe the estimate we did obtain, and also the
one we would have liked to obtain. In fact I shall begin by the latter.
Let us denote by P’ the formal transpose of P. This is the operator
derived from P by integration by parts:

f(Pu)vdx = f u(P'v)dx, u, v E C,(Q).
Now what we would have liked to obtain is an estimate
(12) fl u|dx < cf| Pultdx, u&CL(Q).

Here Q is some open set. A very elementary lemma about Hilbert
spaces (or else a straightforward application of the Hahn-Banach
theorem) shows that, if (12) holds, then to every f&L2(Q) there is
uEL2(Q) such that Pu=f (in Q, in the distribution sense).

Thus (12) is what one needs if he is to prove solvability in the “L?
sense.” As a matter of fact, we would be very happy if we could have
even more: if we could choose the constant C in (12) so that it de-
creases and tends to zero together with the diameter of Q. In such a
case one can always perturb the zero order term in P (or in P’) as
widely as he wishes, for the smallness of C will take care of that. In
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other words, estimates like (12), with C\(0 with diam , are stable
under zero order perturbations. This stability is crucial if we are to
try to extend such an estimate to higher order equations; transposed
into this context it would mean that we could neglect lower order
terms.

As I said (12) is not at all what we proved ; what we proved was the
estimate

(13) f | u|2ds = C f |grad(P'u) |2dx, uE C;(Q).

Now, here, even when the constant C\(0 with diam Q, one cannot
perturb the zero order terms in P’ and deduce a similar estimate; such
a perturbation introduces a quantity of the form

const. f lgrad u |%dx

on the right-hand side of (13), and there is no way of absorbing it
into the left-hand side. Of course, (13) is valid (under Assumption
(11)) regardless of what the zero order terms in P are; but as far as
the method of proof is concerned, you cannot neglect these zero order
terms, you have to handle them with special tricks. This is what pre-
cludes extension to higher order case since we could not possibly hope
to extend those tricks so as to handle lower order, but not any more
zero order, terms.

Moreover an estimate such as (13) does not imply L2 solvability.
What it does imply is that, to every f&L2(Q) there is uEH-1(Q)
satisfying the equation Pu=f in Q; H-1(Q) is the (Sobolev) space of
distributions in @ which can be expressed as finite sums of first order
partial derivatives of functions belonging to L2(Q).

It is now time to describe more recent results. Last December, 1968,
I was able to show that Property (11) is sufficient for local solvability
in QCR2. More precisely:

THEOREM 2. In the case of two independent variables (n=2), if
Property (11) kolds, the equation Pu=f is locally solvable at every point
of Q.

Conversely, suppose that, for some x, ) the following is true:

(14) there is £9540 such that Pn(xe, £°) =0, diRe P (xo, £) %0, and
such that, along the null bicharacteristic sirip of Re Py, through (%o, £°),
Im P, has a zero of finite odd order at that point.

Then the equation Pu=f is not locally solvable at xo.
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But now something more is true, for the estimate used to prove the
existence of solutions is of the kind (12), not of the kind (13). More
precisely, since we deal with a differential operator of order m, the
estimate reads:

(15) 3 flpaulmx < eflP'ul’dx, u & C,(9),
lalsm—1

where €\\0 when diam Q\0. This is optimal—since we know it is
optimal for hyperbolic equations (any better estimate, i.e. where deriv-
atives of order >m —1 of # would be dominated, would imply hypo-
ellipticity). It is not very difficult to derive from (15) that to every
SELXQ) there is u & H™1(Q) such that Pu=f in Q; H™1(Q) is the
Sobolev space of functions whose distributions derivatives of order
=<m—1 belong to L2(Q).

Differential operators in two independent variables, if they are of
principal type, are quite special. Indeed, their principal symbol
P, (x, £) is a polynomial in the two variables (£, &), homogeneous of
degree m, hence can be factorized,

Pu(, ) = a(x) II1 (& — N(@)E),
i

and all the properties of P (at least, those of interest to us here) can
be translated in terms of the characteristic roots Nj(x). These are func-
tions of x alone; £ does not enter. Because of this, Condition (11) can
be rephrased, in this case, in the following manner:

(11’) Foreachj=1, - - - , m, the function Im \; does not change sign
along the integral curves of the vector field

9/3xt — (Re \j(x))d/dx2.

Suppose for a moment that the coefficients of P,(x, £) are analytic.
Then the changes of sign of Im \; must perforce occur at points be-
longing to a proper analytic subset of Q. Even in the C* case, they
certainly could not occur everywhere. Nonsolvability is therefore a
“rare” event. This shows that an example such as Lewy’s, where
nonsolvability occurs at every point, can only be encountered if the
number of independent variables is > 2.

What is now known when there are #>2 independent variables?
Well, in the first order case, we have now the best possible result.
Indeed, I have been able to prove an estimate of the kind (12), here
again with a constant C\\0 with diam Q. Thus:

THEOREM 3. If P is a first order linear partial differential operator
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with C* coefficients in Q, having Property (11), every point xo<Q has an
open neighborhood U(xo) CQ such that

PLYU(x0)) D LU ().

This is an improvement on the 1962 result concerning the existence
of solutions to first order PDEs. The proof of Theorem 3 uses The-
orem 2 via the observation that, locally, any first order linear PDE,
of the form?

ou hd u
— + \/("" 1) Ebj(x’ t) - =f)
at j=1 ox?

having Property (11), can be transformed by a change of variables
into a first-order PDE in {wo independent variables. The unfortunate
thing is that such changes of variables are to be performed in the
complement of the set

{x; bi(x’ t) = ij = 1: P (2 (x’ t)EQ},

and their domain of validity tends to shrink as we approach this set.
The derivatives of the cut-off functions which are used tend, in ab-
solute value, to + © as the domains of the local transformations
shrink and this creates some difficulty when one patches together the
L2-estimates which have been established in each domain individ-
ually. The derivatives must be kept under control and this is achieved
by means of a lemma which resembles very much a classical lemma of
Whitney used to extend to the whole space differentiable functions
defined in a closed set.

At last I come to PDEs of principal type, in any number of inde-
pendent variables, of any order. Very recently, Louis Nirenberg and
I have shown the necessity of Condition (11), under the usual re-
strictions. Precisely we proved:

THEOREM 4. Suppose that for some point xoEQ, Property (14) holds.
Then the equation Pu=f is not locally solvable at x,.

As a matter of fact, we prove this theorem when P is a pseudodiffer-
ential operator of order m (which is then an arbitrary real number),
under the assumption that the homogeneity degrees, with respect to
£, of the various terms in the symbol P(x, £) of P are m, m—1, m—2,

3 It is easy to see that every first-order linear PDE with C® coefficients, without
any zero order term, which does vanish identically at any point, can be brought into
that form—at least locally and up to a nowhere vanishing factor—by a change of
coordinates.
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-+ - ,m—k, - - - .One must then modify the statement of Condition
(14) as follows:

(14') there is £°5£0, such that Pn(xo, £°) =0, d¢ Re Pn(xo, £) %0, and
such that, along the null bicharacteristic strip of Re P, through (xo, £°),
Im P,, has a zero of finite odd order at that point and changes sign there
Sfrom minus to plus.

This property is invariant under multiplication of P,(x, £) by a
nowhere vanishing function ¢(x, £) as considered in Theorem 1. This
is shown in [7]. In the pseudodifferential case one must also suitably
modify the concept of local solvability.

We have learned by Professor Olga Oleinik that one of her Ph.D.
students, Y. V. Egorov, has proved a result which appears to be
stronger than Theorem 4. I must say that I am not extremely sur-
prised that others should have also proved this kind of theorem, as it
is really a question of reworking, with a little bit of skill, the original
proof of the necessary condition of Hormander of 1959.

Theorems 2, 3, 4 represent the results known at the present time
on the subject of local solvability of linear PDE'’s in the sense of
functions and distributions.*

I would like to end this lecture by a few remarks about solvability
in a more general sense than function or distribution solvability. As
a starting point for these remarks I wish to take a fresh look at the
operators (6) which I now write

8/3t + ittd/ox, i=+/ —L1.

After performing a Fourier transformation in the variable x, the asso-
ciated equation reads

(16) o+t =,  fE (CO)a

where the “hats” denote Fourier transformation in ¥ (on the Fourier
transforms-side the variable is denoted by £). We may solve (16) in
two different ways:

t tk+1 — ok+1
an  a@d = [ &9 exp(——,e:%s)ds,

¢ During the summer of 1969, L. Nirenberg and I were able to prove our conjecture
(p. 124) for all PDEs of principal type, of any order, in any number of variables, if
they have analytic coefficients. The results obtained are the best possible, as we prove
an estimate of the kind (15). On the other hand, Yu. V. Egorov claims to have ob-
tained very general sufficient conditions for the validity of the so-called subelliptic
estimates, which imply local solvability. But it is not clear to us, at this time, what his
conditions are (added on the proofs).
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+o0 tk+l — Sk+1
18 a, ) = — ST Y s,
(18) (€3] ‘ f& ) exp( P g) ds

If we want to return to the original equation we must then perform
an inverse Fourier transformation, reverting from the variable £ to x.
But we will end up with a distribution solution if and only if we start
from a solution of (16) which is fempered with respect to £, that is to
say (roughly speaking), which, as a function of £, does not grow at
infinity faster than some polynomial. The question is then whether
such a solution of (16) exists. Suppose that k is even. Then we could
select (17) as the solution for £>0 and (18) when £<0 (the solution
does not have to be a continuous function of £ but only a tempered
distribution in £!). It is clear that, with these choices, the exponent

— (tk+1 — Sk+l)£/(k _l_ 1)

in each integral, remains bounded. We have thus defined a solution
0 of (16) which is an L* function of £. But what if £ is odd? It is clear
that this procedure will not work. By virtue of the nonexistence
theorems stated earlier we know that no procedure will work. On
the other hand, we have at our disposal lots of solutions of (16), and
they have very nice expressions;one feels that they should be useful
in some computations at least, and that we should be able to define
and use their inverse Fourier transforms. This is indeed the case, but
these inverse Fourier transforms will, of course, not be distributions
—they will be objects of a fairly general nature, known under the
name of analytic functionals. These are linear functionals on spaces
of holomorphic functions, exactly like distributions are linear func-
tionals on the space of C* functions with compact support. One of
the essential differences between the former and the latter is that
there exist partitions of unity consisting of C; functions (subordi-
nated to any locally finite open covering of the base space) but there
are no such partitions consisting of holomorphic functions. This dif-
ference has, of course, extremely deep consequences; one of these is
that one can define the support of a distribution but not the support
of an analytic functional. One has the right to say that a given distri-
bution takes these values in a given open set and these different values
in a different open set, but nothing of the sort may be asserted about
analytic functionals. In summary, distributions are localizable
whereas analytic functionals are not. This does not mean that the
latter are useless, it only means that they do not have the properties
which go with localization. As a matter of fact, a great deal can be
said, and has been said, about analytic functionals (see e.g. the works
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of A. Martineau, in particular [5]), mainly through their “Fourier”
transforms, which happen to be called Fourier-Borel transforms
(sometimes Fourier-Laplace, sometimes Borel-Laplace transforms).
Let @ be an open subset of the complex n-dimensional space C* inter-
secting the real space R* and let Qz =QMNR"; then any L! function
f(x) with compact support in Qz defines a unique analytic functional
on {2 through the formula

G, 1y = frenes,

where % is an arbitrary holomorphic function in Q. Similarly any dis-
tribution with compact support in Qg defines a unique analytic func-
tional in ©. Thus distributions with compact support can be identi-
fied with certain analytic functionals (but of course not every analytic
functional can be thus defined by a distribution with compact sup-
port—otherwise our remarks above about localization would be some-
what irrelevant). Keeping this in mind, I would like to state a theorem
about solvability in spaces of analytic functionals. In fact, it concerns
local solvability of the Cauchy problem posed for a differential opera-
tor of order m with analytic coefficients (only analytic coefficients can
act as multipliers on analytic functionals). In the present case we
must distinguish between space variables, x=(x1, - - -, x"), and a
time variable; we assume that the differential operator under study
has an expression
m .
P= D': - Z cj(xi t, Dz)DT—’r
=1

where each ¢;(x, ¢, D,) is a differential operator of order <j with re-
spect to x with coefficients which are analytic functions of (x, t), say
in a neighborhood U of the origin in R**!, We consider the Cauchy

problem for P relative to the hyperplane ¢ =0, which is the problem of
finding a solution # to

19) Pu=f 1inU,

(20) Diu

g inUN{(x 0;t=0f, Ek=0,---,m—1,

The “objects” g, depend only on «, they are called the Cauchy data; f
will be a function of ¢, say a continuous function of ¢, valued in a space
of analytic functionals with respect to the variables x; and we shall
also take the g; to be analytic functionals with respect to x. Possibly
after some shrinking of the neighborhood U, it can be (roughly)
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stated that the problem (19)—(20) has a unique solution which is a C*
function of ¢ with values in the space of analytic functionals with re-
spect to x. For the precise statement, see [15, §11]. The proof of this
theorem is easy, it is a dual form of the Cauchy-Kowalewski theorem.
I should add that much more than existence and uniqueness of the
solution # can be asserted: the solution # can be expressed in terms
of the data, f and the g, by means of an integral formula having a
kernel which is an analytic function of the intervening variables. On
this subject see [15, Chapter I1], also [16]. At any rate, we see that
when f and the g, are C* functions of x and ¢ with compact support or
distributions of x and ¢ with compact support (f does not have to be a
function with respect to ¢ in order that we have a solution u to (19)—
(20), f can be only a distribution in ¢, but then # will also have to be a
distribution in £), the equation (19) admits a solution—always! but of
course it is not going to be a distribution, only a distribution with re-
spect to ¢, but an analytic functional with respect to x.

It should be mentioned that we should not expect a theorem such
as the one just stated to hold for differential operators with C*® co-
efficients—not only because these coefficients would not multiply
analytic functionals, for we would be willing to try to replace analytic
functionals with something else. The obstruction here is the unique-
ness part in the statement: indeed it is known that there is no unique-
ness in the (noncharacteristic) Cauchy problem for certain equations
with C* coefficients—even when the solutions happen to be C* func-
tions of x and ¢ with compact support! Examples of such equations
have been constructed by Paul Cohen and A. PIi§.

There are objects, that is, generalized functions, which are more
general than distributions and, in a certain sense, less general than
analytic functionals—and which manage to retain the localization
properties: they are the, so-called, Sato hyperfunctions. Very roughly
speaking they are boundary values (carried by pieces of the real
space R") of holomorphic functions (defined in complex neighbor-
hoods of those “pieces” of R»); they have attracted the attention of
theoretical physicists as they lend themselves to certain operations
which are not allowed in distribution theory. Also they have pro-
vided solutions to PDE with constant coefficients in cases where no
distribution solution exists (see [1]). Thus it is only natural to ask
the question as to whether one has to go so far as analytic functionals
in order to attain solvability (at least in the case of equations with
analytic coefficients) and whether Sito hyperfunctions, with their
localization properties, would not suffice. Alas, this does not seem to
be the case. A student of Laurent Schwartz, Pierre Schapira, has
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shown that, at least for first order PDE with analytic coefficients,
nonsolvability in the distribution sense implies nonsolvability in the
space of Sito hyperfunctions (see [11], [12]). I am convinced that
what lies at the root of nonsolvability of PDE'’s of principal type is
not our insistence on considering distributions, it is not just compli-
ance with fashion; it is our insistence in having solutions which are
localizable generalized functions.
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