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Let K be an algebraic number field with ring of integers R. For an 
J^-order À in the semisimple X-algebra A it seems to be one of the 
most important problems—from the viewpoint of integral representa­
tions—to characterize those orders A, for which the number «(A) of 
nonisomorphic indecomposable A-lattices is finite. This problem is far 
from having a satisfying solution. However, a breakthrough came at 
the end of 1967, when Drozd-Roiter [3] and Jakobinski [5] gave, 
independently of each other, a necessary and sufficient condition 
for the finiteness of w(A), in case A is commutative. Whereas Jakobin-
ski's methods seem to be restricted to the commutative case, the 
methods of Drozd-Roiter bear the possibilities of a generalization to 
the noncommutative case. This note shall be a small contribution in 
that direction : We shall give here a necessary and sufficient condition 
for the finiteness of #(A) in case A is an order in a direct sum of skew-
fields over a (P-adic number field. We shall first fix the notation and 
then sketch the proof of our theorem; a more explicit version is going 
to be published later (cf. [ó], [7]). 

R: a complete discrete rank one valuation ring with finite residue 
class field, 

K: the quotient field of R, 
Dii ISi^n: finite dimensional separable skewfields over K, 

il = Z ? ®Di9 

r : the unique maximal J^-order in A, 
A: an J?-order in A, 
JV = rad (A): the Jacobson radical of A, 
A$ÏÏI/: the category of finitely generated unitary left A-modules, 
A®f: the category of the projective modules in A9^ / , 
A9flZ°: the category of A-lattices; i.e., ME:A.^lf with M GR®', 
n(A) : the number of nonisomorphic indecomposable A-lattices, 
JJ,A(X): the minimal number of generators of X G A - M 7 , 

rad A (-30: the intersection of the maximal left A-submodules of 
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Homomorphisms are written opposite to the scalars. 

(1) THEOREM. n(A) is finite if and only if 
(i) M A ( I Y A ) ^ 2 and 

(ii) MA(radACT/A))£l. 

SKETCH OF THE PROOF. The theorem is easily reduced to the case 
where A is indecomposable as left A-module. For the proof of the 
necessity, a technique of Dade [ l ] is used, which allows us to con­
struct an infinite number of nonisomorphic indecomposable A-lattices 
in case one of the conditions in (1) is violated: 

(2) LEMMA. Let Ai be an R-order in A containing A such that N Ai 
is a two-sided Ayideal, and put a=Ai/N Ai, 3Z=A/N. If f or each 
nÇzNy there exists a left ZZ-submodule vn of (5t(n), the direct sum of n 
copies of (5fc, such that 

(i) avn = ain\ 
(ii) f'or an idempotent 7r£EndQ(0t(w)) with Tr\vn*vn—*t>n, we have 

7T = 0 Or 7 T = 1 , 

then n(A) = *>. 

For the necessity of the proof of (1) we set up vn in the following 
form: 

(3) vn = {xt + yia, x2 + y2a + yrf, xz + yza + y2p, • • • , # « 

+ ynoL + yn-$}y 

where a and j8 are fixed elements in Ct and xiy y^ \Sit=*n, are arbitrary 
elements in 3C. Then vn is a left 3C-module (we remark, that the ele­
ments in 3C do not necessarily commute with a or j3). If 1, a, ]8 are 
linearly independent (from the left) over 3C, then a 3C-basis of vn is 
given by {^-ji^n, ^ = ( 0 , • • • , 0, lit 0, • • • , 0), and {/*}i^n, 
fi = aei+l3ei+i, ew+i = 0. Then vn satisfies (i) of (2). 

#£Enda(C£ (w)) can be represented by an (^Xw)-matrix (0»y) with 
entries in Ct. The condition $ | Vfl: vn—>vn implies 

<t>ij(eù = x{j + y{ja + yij-ifi', i,j = 1, • • • , n, yi0 = 0, xih y y G X, 

and from the requirement <£(ƒ») &n we obtain the following system of 
linear equations: 

aXij+ayija+ay it /_i/3+^x i+1j+0y i+lt ja+^yi+1,3-10==aj+b ja+bj^, 
(4) 

ùj, bj G K; i , i = l, • • * , n, ^n+i,y = 0, xn+i,j—Q. 
Now it is clear, how we proceed in the proof of the necessity of (1). 

One shows first, that only the two cases 
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( i )MA(r /A) = 3and 
(ii) MA (r /A) = 2, MA(radA(r/A)) = 2 can occur. 
For (i) we choose, for the application of (2), Ai = T; i.e., & = F/NTf 

and in (ii) we take Ai=Ao=A+iVT; i.e., Ct=A0/iVAo. The goal is to 
show that in a there exist a and j8 such that the solutions of (4) imply 
0 = 1 or 0 = 0, if 0£End a (Ot n ) is idempotent. To do so, we have to 
know the products âx, âxâ> âxfi, fixa, jSxjS, for x£3C, in terms of the 
left 3C-basis {e»}uis», {fi}is%sn of vn. The computational treatment 
of the 16 different cases shows that (2) can be applied. 

The proof of the sufficiency of (1) is even more computational than 
the previous part. The central role in this part of the proof is played 
by so-called "Bass-orders"; an i?-order A' in A is called a Bass-order 
if every .R-order A in A, containing A7 is a Gorenstein-order; i.e., 
Hom^Âl» R) is a generator in ÂSTC/. The importance of Bass-orders A' 
for the proof of (1) originates from the fact, that for every M£A '2 ( Ï1 0 

we have MÇz!&f for an i?-order ADA'; in particular, n(k!) < oo. 
The conditions (i) and (ii) of (1) imply immediately, that A is the 

direct sum of a t most three skewfields (always under the condition, 
that A is indecomposable as left A-module). Thus we have to dis­
tinguish the following three cases: 

(S) (i) A is a skewfield, 
(ii) A is the direct sum of two skewfields, 
(iii) A is the direct sum of three skewfields. 
The crucial point in the proof of the sufficiency of (1) is, that we 

may assume: 

# - i = [a ç. A | Na C A}, N = rad(A), 

is a Bass-order and MAÇT/A) = 2 . 
The cases in (5) have to be treated separately: 
In (5, i) we associate with M G A ^ T I 0 the exact sequence 

0 -> NM -> M -> M/NM ~> 0; 

here iVMGtf-1^0 is a lattice over the Bass-order N"1, 
Since A/N=X is a field, we have M/NM^3Z<m) for some m£iV. 
In (5, ii) we associate with MÇZAÎÏÏI0 the exact sequence 

O - ^ M H i exM-*M->M/(Mr\A exM) ->0, 

where ex is a primitive idempotent in A, such that A(l— ei) is a 
maximal -R-order and Aei is a Bass-order. Thus MC\AeiMÇzkevftV* and 
M/{MC\AeiM)^k{\--ei)m for some m&N. 

In (5, iii) we associate with M£A9TC° the exact sequence 
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0-+MriA(l -eùM-*M-*M/(Mr\A(\ ~e8)Af)->0, 

where e% is a primitive idempotent in A, such that Aea is a maximal 
order and A(l— ez) is a Bass-order. Thus M / \ 4 ( l — e3)AfGA(i-«t)2fTl0 

and M/(Mr\A(l-ez)M)^Aeln) for some wGW. 
This indicates the direction for a possible proof of the sufficiency 

of (1) : In each of the above cases, we can associate with MGA$TC° an 
exact sequence 

E: 0 -> M' -» M ~> M " -* 0, 

where M7 is a lattice over some Bass-order Ai. Thus 

8 

Jf ' Ö £ 0 Ml <•<>, 

where Mi^Mj for *Vj , and - M Ï G A / P ' for an b o r d e r ApDAi. In 
addition, M' is a characteristic submodule of M and HonuCM", Mf) 
= 0. Moreover, A f " S S ( m \ where SGASTC' is a ring such that the 
Krull-Schmidt theorem is valid for A-direct summands of M". 

Thus, the equivalence class [E] of the exact sequence E lies in 

E © (ExU(S, Jf <))«X.p 
{-1 

and we may associate, in a unique fashion, with the isomorphism class 
of M an (wX 2 * - i s*)-matrix 

X M = (Xi, • • • , X ) , X< G (Extl(5, Jfi) W 

But ExtA(M", M') is an [EndA(M"), EndA(M')]-bimodule; ob­
serve, that homomorphisms are written opposite to the scalars, and 
the elements in EndA(M") may be represented as (rnXtn)-matrices 
Z, and the elements in EndA(Af') may be represented as ( X X i su 
23*.i s»-)-matrices Y. Hence we can form the extensions ZXMY. 
Under the above hypotheses, we may apply a lemma of Heller-
Reiner [4], which reduces the decomposition of M to the decomposi­
tion of matrices: 

(6) M is decomposable if and only if ZXMY decomposes as matrix, 
where ZGEndA(.M") and YG End A (AT) are invertible matrices. 

These ideas lead the way for the computational part of the proof 
of (1); the following steps have to be taken: 

1. Find all -R-orders Ap, that contain the Bass-order Ai (there are 
only finitely many). 
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2. For every p find all nonisomorphic indecomposable projective 
Ap-lattices Mip (there are only finitely many). 

3. Compute ExtA(S, Mip) explicitly. 
4. Compute HomA(M»p, Mjp) explicitly. 
5. Compute how Honu(M;p , Mjp) acts on 

Ext i (S, M<,)->ExtA(S, Mi0), 

and how EndA(S) acts on ExtA(5, Mip). 
6. Characterize the matrices X £ £?»i©(Ext A (S , Ml))m><si, which 

actually do correspond to exact sequences of the type E. 
7. Decompose these matrices under ZXYy where Z and Y are 

invertible. 
8. Show, that the number of nonequivalent indecomposable ones 

among these matrices is finite. 
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