ON INTEGRAL REPRESENTATIONS

BY ANDREAS DRESS

Communicated by Hyman Bass, April 1, 1969

Let G be a finite group and p a prime. G is called cyclic mod p if there exists a normal p-subgroup $N \subseteq G$ such that G/N is cyclic.

Let R be a commutative ring with $1 \in R$. Write $\mathfrak{C}_R(G)$ for the set of subgroups $U \subseteq G$, which are cyclic mod p for some appropriate prime $p \ (= p(U))$ with $pR \neq R$.

An RG-module M is a finitely generated R-module, on which G acts from the left by R-automorphisms. If $U \leq G$ we write $M \mid_{U} f$ for the RU-module, one gets by restricting the action of G on the R-module M to U.

If N is an RU-module, we write $N^{U\to G}$ for the induced RG-module RG $\otimes_{RU} N$.

Two RG-modules M, N are called weakly isomorphic, if there exists an RG-module L and a natural number k, such that $k \cdot M \oplus L$ $\cong k \cdot N \oplus L$ ($k \cdot M$ short for $M \oplus \cdots \oplus M$, k times), we write then $M \cong N$.

REMARK. If the Krull-Schmidt-Theorem holds for RG-modules, we have

$M \simeq N \Leftrightarrow M \cong N$.

THEOREM 1. Let M, N be two RG-modules. If $M|_{U} \simeq N|_{U}$ for all $U \in \mathfrak{C}_{R}(G)$, then $M \simeq N$. Moreover there exist for any $U \in \mathfrak{C}_{R}(G)$ two R-free RG-modules M(U), N(U) with $M(U)|_{V} \simeq N(U)|_{V}$ for all $V \subseteq G$, which do not contain any conjugate of U, but $M(U)|_{U} \simeq N(U)|_{U}$.

One can get an even more precise statement by using Grothendieck-rings: Let X(G, R) be the Grothendieck-ring of RG-modules with respect to split-exact sequences, i.e. X(G, R) is an as additive group isomorphic to the free abelian group, generated by the isomorphism classes of RG-modules modulo the subgroup generated by all expressions of the form $M-M_1-M_2$ with $M\cong M_1\oplus M_2$ —and the multiplication in X(G, R) is given by the tensor-product \otimes_R of RG-modules. Write $X_Q(G, R)$ for $Q\otimes X(G, R)$. Obviously $M\cong N$ if and only if M and N represent the same element in $X_Q(G, R)$.

 $X(\cdot, R)$ and $X_{\mathcal{Q}}(\cdot, R)$ are obviously contravariant functors from the category of groups into the category of commutative rings. Especially for $U \leq G$ one has restriction homomorphisms res $v: X(G, R) \to X(U, R)$, $X_{\mathcal{Q}}(G, R) \to X_{\mathcal{Q}}(U, R)$ and Theorem 1 reads now

THEOREM 1'. $\prod_{U \in \mathfrak{C}_R(G)} \operatorname{res} |_{U} \colon X_Q(G, R) \to \prod_{U \in \mathfrak{C}_R(G)} X_Q(U, R)$ is injective.

One can also describe the image of $X_{\mathcal{Q}}(G,R)$ in $\prod_{U\in\mathfrak{C}_R(G)}X_{\mathcal{Q}}(U,R)$. More generally let \mathfrak{U} be any family of subgroups of G closed with respect to subconjugation, i.e.

$$U, V \leq G, \quad g \in G, \quad gVg^{-1} \leq U \in \mathfrak{U}$$

implies $V \in \mathbb{U}$. For any such triple U, $V \in \mathbb{U}$ and $g \in G$ with $gVg^{-1} \leq U$ one has a diagram:

$$X_{\mathcal{Q}}(G, R)$$
 $\downarrow \tau_{g}$
 $X_{\mathcal{Q}}(U, R)$
 $\downarrow \tau_{g}$
 $X_{\mathcal{Q}}(V, R)$

the maps ϕ and ψ given by restriction, the map τ_{σ} defined by $V \to U$, $v \to gvg^{-1}$, and one can easily see, that this diagram is commutative. Thus $\prod_{U \in \mathfrak{U}} \operatorname{res}|_{U} \colon X_{\mathcal{Q}}(G, R) \to \prod_{U \in \mathfrak{U}} X_{\mathcal{Q}}(U, R)$ maps $X_{\mathcal{Q}}(G, R)$ into

$$X_{\mathcal{Q}}(\mathfrak{U}, R) = \left\{ (x_U)_{U \in \mathfrak{U}} \in \prod_{U \in \mathfrak{U}} X_{\mathcal{Q}}(U, R) \mid \tau_{\theta}(x_U) = x_{\overline{\nu}}, \right\}$$

whenever
$$U, V \in \mathcal{U}, g \in G \text{ and } gVg^{-1} \leq U$$

and one has actually

THEOREM 2. The canonical map $X_Q(G, R) \to X_Q(\mathfrak{U}, R)$ is always epimorphic and is an isomorphism if and only if $\mathfrak{U} \geq \mathfrak{C}_R(G)$.

It seems to be difficult, to prove a similar statement for X(G,R) instead of $X_Q(G,R)$, but if X'(G,R) denotes the image of X(G,R) in $X_Q(G,R)$, i.e. X(G,R) mod torsion, and if for any subconjugately closed family $\mathfrak U$ of subgroups of G we write $\mathfrak D\mathfrak U$ for $\{V \leq G \mid \text{ there exists } U \leq V, U \in \mathfrak U, V/U \text{ a p-group} \}$ then one can prove

THEOREM 3. If $(x_V)_{V \in \mathfrak{DU}} \subset X'(\mathfrak{DU}, R) \subseteq \prod_{V \in \mathfrak{DU}} X'(V, R)$ then the projection $(x_U)_{U \in \mathfrak{U}}$ of $(x_V)_{V \in \mathfrak{DU}}$ into $X'(\mathfrak{U}, R) \subseteq \prod_{U \in \mathfrak{U}} X'(U, R)$ is contained in the image of X'(G, R) in $X'(\mathfrak{U}, R)$.

REMARK. One can form a category $\mathbb{1}$, whose objects are the subgroups in $\mathbb{1}$ with $\operatorname{Hom}_{\mathbb{1}}(V, U) = \{g \in G \mid gVg^{-1} \leq U\}$ and obvious composition. Then $X(\cdot, R)$, $X_{\mathcal{Q}}(\cdot, R)$, X', R) are contravariant functors on $\mathbb{1}$ and one has

$$X(\mathfrak{U}, R) = \underset{\mathfrak{U}}{\operatorname{proj}} \lim X(\cdot, R), \qquad X_{\mathcal{Q}}(\mathfrak{U}, R) = \underset{\mathfrak{U}}{\operatorname{proj}} \lim X_{\mathcal{Q}}(\cdot, R),$$

$$X'(\mathfrak{U}, R) = \underset{\mathfrak{U}}{\operatorname{proj}} \lim X'(\cdot, R).$$

We will state one lemma, which is fundamental for the proof of the above theorems.

We say, that an RG-module M is weakly, resp. quasi- \mathfrak{U} -induced, if there exists a natural number k and for any $U \in \mathfrak{U}$ two RU-modules $N_1(U)$, $N_2(U)$ such that

$$\begin{split} k \cdot M \, \oplus \, \bigoplus_{U \in \mathfrak{U}} N_1(U)^{U \to g} & \cong \, \bigoplus_{U \in \mathfrak{U}} N_2(U)^{U \to g}, \\ \text{resp. } k \cdot \left(M \, \oplus \, \bigoplus_{U \in \mathfrak{U}} N_1(U)^{U \to g} \right) & \cong k \cdot \left(\bigoplus_{U \in \mathfrak{U}} N_2(U)^{U \to g} \right). \end{split}$$

For a G-set S (i.e. a finite set, on which G acts from the left by permutations) we write R[S] for the free R-module, generated by S, considered as RG-module by extending the action of G on the basis S linearly to R[S]. Two G-sets S_1 , S_2 are \mathfrak{U} -isomorphic $(S_1 \stackrel{\mathfrak{U}}{=} S_2)$, if the restrictions $S_1|_U$ and $S_2|_U$ to any $U \in \mathfrak{U}$ are isomorphic. Then we have the following

Lemma. For a group G, a family \mathfrak{U} of subgroups and a commutative ring R the following four statements are equivalent:

- (i) the trivial RG-module R is weakly U-induced;
- (ii) any RG-module is weakly U-induced;
- (iii) $X_{\mathcal{Q}}(G, R) \rightarrow \prod_{U \in \mathfrak{U}} X_{\mathcal{Q}}(U, R)$ is injective;
- (iv) if S_1 , S_2 are two \mathfrak{U} -isomorphic G-sets, then $R[S_1] \simeq R[S_2]$.

Any of these statements implies, that every RG-module is quasi- $\mathfrak{N}\overline{\mathfrak{U}}$ -induced with $\overline{\mathfrak{U}} = \{V \leq G | \text{ there exists } g \in G, U \in \mathfrak{U} \text{ with } gVg^{-1} \leq U\}$, i.e. the subconjugate closure of \mathfrak{U} and $\mathfrak{N}\overline{\mathfrak{U}} = \{W \leq G | \text{ there exists } V \in \overline{\mathfrak{U}}, V \leq W, W/V \text{ a p-group} \}$ (just as before). Especially any RG-module is quasi- $\mathfrak{N}\mathfrak{C}_R(G)$ -induced—which generalizes a well-known result of Brauer-Bermann-Witt-Swan for the case R = Q. In case ζ is a eth root of unity with $e = \exp(G)$ and there is a homomorphism $Z[\zeta] \to R$ one can sharpen this result, to generalize Brauer's result on elementary subgroups. Define $\mathfrak{C}_R(G) = \{V \leq G | \text{ there exists } N \leq V \}$ with V/N elementary and V a V-group for some V with V-V-module is quasi-V-V-module is quasi-V-module V-module V-module is quasi-V-module V-module V-module

define an RG-module M to be \mathfrak{U} -projective, if M is a direct summand in $\bigoplus_{v\in\mathfrak{U}}(M|_v)^{v\to g}$. One can develop a theory of \mathfrak{U} -projective RG-modules completely analogous to D. G. Higman's theory in the case $\mathfrak{U}=\left\{U\right\}$ and one can also define for any RG-module M its family of vertices—corresponding to Green's theory, i.e. for any RG-module M there exists a family of subgroups $\mathfrak{U}(M)$ such that M is \mathfrak{B} -projective if and only if $\overline{\mathfrak{B}} \geq \mathfrak{U}(M)$ ($\overline{\mathfrak{B}}$ as before the subconjugate closure of \mathfrak{B}) and all subgroups in $\mathfrak{U}(M)$ are p-groups for various primes p with $pR \neq R$. And one can prove that two \mathfrak{U} -projective RG-modules M and N are weakly isomorphic, if their restrictions $M \mid V$ and $N \mid V$ are weakly isomorphic for all $V \leq G$ which contain a normal p-subgroup $N \leq V$ with $N \in \overline{\mathfrak{U}}$, V/N cyclic and $pR \neq R$. In fact one proves Theorem 1 by using the above statement in some kind of complete induction argument, starting with $\mathfrak{U}=\left\{E\right\}$, the trivial subgroup. There are corresponding generalizations of the other statements.

FREE UNIVERSITY OF BERLIN AND
INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540