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1. Introduction. Although existence and uniqueness theorems for 
linear elliptic partial differential equations in a domain D with coeffi­
cients continuous in D have been known for some time, similar re­
sults for equations whose coefficients have singularities in the domain 
under consideration are practically unknown. Recently attention has 
been given to a class of singular equations which appear frequently in 
both pure and applied mathematics and are known as generalized 
axially symmetric partial differential equations [3], [5], [8], Just as 
a thorough knowledge of the Laplace and Helmholtz equation guided 
the attack on linear elliptic equations with continuous coefficients, 
it is hoped that a better understanding of generalized axially sym­
metric equations will give insight towards developing a theory of 
elliptic equations with singular coefficients. 

We wish to announce in this note a uniqueness theorem for the 
exterior Dirichlet problem for the generalized axially symmetric 
metaharmonic equation 

r .. d2u d2u d2u s du 
(1) L X . M - — • + • • • + — + — + - - + X% = 0 

dx{ dxz
n dp2 p dp 

where s> — 1, s 5^0, and X > 0 [5]. This is the first time a uniqueness 
theorem has been obtained for a singular elliptic partial differential 
equation in more than two variables whose coefficients are singular 
in its domain of definition, such work in the present case having been 
delayed due to an insufficient knowledge of certain areas of the theory 
of several complex variables. Our result depends on first using the 
Hadamard-Gilbert Theorem [5] to solve the classical expansion 
problem for Appell series and to then apply this along with Vitali's 
theorem for several complex variables [ô] to obtain the desired 
uniqueness theorem. 

1 This research was supported in part by the Air Force Office of Scientific Research 
through grant AFOSR-1206-67. 
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2. The expansion problem for Appell series. An Appell series is a 
series of the form 

00 

(2) £ OMVMXO = E E auVuiO; s > - î, s ^ 0 

where the polynomials 

(3) VM(Ç) = VÛ(ii, ' • • , £n); M = (tni,tn2, - - - , mn) 

are uniquely defined by the generating function 

(4) (i - 2(«, e + ||«|h)^-1)/2 - £ «M }(Ö. 

Here (a, © a 2 ^ i « A . IMI2 = fo «) , « ^ o f • • • off», m = | i l f | 
= W i + w 2 + • • • + w » and the summation in equation (2), (4), and 
in what follows, is meant to be an w-fold sum over all indices from 
zero to infinity. We also need the related polynomials 

(5) UÏ\$ - UMHI, & , - • . , £,) 

which are defined by the generating function 

(6) {[(«, o - ir+ii«n2(i - \mr/2 - E su?®. 
These polynomials satisfy the biorthogonality relation 

2T»I*T(S/2 + l)(s)m 
ƒ. 

(2m + n + s - l ) r ( n /2 + j / 2 - l /2 ) i f I 

8irjf=8h»i ' ' # àinmn, M\~m\\ • • • mnl. Here 5(0, 1) is the real solid 
n dimensional ball {£| || j | | ^ 1}. For more information concerning the 
polynomials V$(Ç) and £/$(£) see [ l ] . We are interested in the 
classical expansion problem for analytic functions of n complex vari­
ables in terms of the polynomials V$ (£) viz. if ƒ (£) is analytic on 
5(0, 1) can it be expanded in a series of the form (2) and if so what 
can be said about the region of convergence? 

THEOREM 1. Let ƒ (£) be an analytic function of n complex variables 
in some neighborhood rj of the unit ball 5(0, 1). Then j'(£) can be ex­
panded in an Appell series, 

f(& = E *MVH(Q; s> -l,sje0 
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which converges uniformly f or £ £ 3 = rç{5(0, l)}n77*{S(0, 1)} with 
ri{S(0, 1)}CTJ, *7*= {£|£*£^} (* denotes complex conjugation), and 
where the coefficients are given by the formula 

au 

with 

hM = 

J 5(0,1) 

(2m + n + s - l)r(£[» + s - \})M\ 

2**l*T(s/2 + !)(*). 

OUTLINE OF PROOF. The technique used is to develop an integral 
operator approach to the method of generating kernels [2]. We first 
define a new function F(Ç) defined by 

F(r) = 0/( | ) = ( - Î - Y f K&, ?)ƒ(!)<*»! = £ «jrf* 
\Z7TV ^ 5(0,1) 

r ( i [ « + * — i])(i — |l€||*)<—»'* 

(8) 

where 

2 ^ ' 2 r ( V 2 + l) 
(9) 

(S)m 

From the Weierstrass comparison theorem [5] and the generating 
function expansion (6) it can be shown that equation (8) defines an 
analytic function of f for f £A(0, 1). Here A(0, 1) denotes the open 
unit ball in the complex f space. We next define the inverse operator 
O-'by 

- i / 1 V C dnS 
m=0 F(f) = ( — ) K2&Ç)F(Ç)-± 

(io) W J r r 

= ]C VMVM (£) 

where 

*.«,r) - S r ^ e = (i - 2(|, e) +1||[) 
1 | |2\-(n+«-l)/2 

r v 11 r 
and T = H ? - i r» where the Ti are chosen such that T lies outside a 
sufficiently large hypersphere A(0, R). By using the Hadamard-
Gilbert theorem [5] and the fact that ƒ(£) is analytic in rj, one can 
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conclude from (8) that F(Ç) must in fact be an analytic function in 
some complex neighborhood of A(0, 1) on its principal sheet of defini­
tion. Using, this fact in conjunction with the series representation (8) 
for F(Ç) shows that the series (10) converges uniformly in some com­
plex neighborhood of 5(0, 1) and agrees with ƒ (J) there. The formula 
for the coefficients is arrived at through use of the biorthogonality 
relation (7). 

3. The uniqueness theorem. Since the plane p = 0 is a singular 
curve of the regular type with indices 0 and 1— s [4] there always 
exist solutions of equation (1) which are real analytic on some portion 
of the axis p = 0, and if s> — 1, sj^O, such solutions can be continued 
across the axis as an even function of p. Hence each such analytic 
solution is analytic in a domain D that is symmetric with respect to 
the axis p = 0 and can therefore be expressed as u(x, p) = ü(rf £) where 
r> £ = (£i> • • ' > £n) are hyper-zonal coordinates. 

THEOREM 2. Assume s> — 1, ss^O, and let u(x, p) = ü(r, £) be a real 
analytic solution of L\9[u] = 0 in % where § is the exterior of a normal 
domain £> which is symmetric with respect to the axis p = 0. Let ü(r, £) 
£ C 2 ( § ) and for each fixed r, a^r< 00 (where a is such that r = a con-
tains 2D) assume that ü(r, £) is an analytic f unction of £ in a domain 3f in 
the complex £ space containing the (real) closed unit ball 5(0, 1), where 
3 is symmetric with respect to conjugation and independent of r. If 

(i) there exists a positive constant M such that 

r(»+*>/21 ü(r, Q\ £M for a ^r < 00, £ £ 3 , 

(ii) l i n w fs(o,i)rn+'(l - | |£ | |2) (*-1 ) / 2 | dü/dr-ikü\ HS = 0, 
(iii) ü(r, £) = 0 on the boundary of £) 

then ü(r, £) = 0 . 

REMARK. If conditions (i) and (ii) of the theorem are not imposed 
there will exist eigenfunctions of equation (1) and we cannot expect 
a unique solution to exist. 

OUTLINE OF PROOF. Using Theorem 1 we expand ü(r, £) for each 
fixed r ^ a in an Appell series 

(11) fi(r, 0 = 2 : oM(r)v£\Q i £ G 3 -

From the biorthogonality property (7) it can be shown that 

(12) aM(r) = f-1/2^+-1)2,+1/2(n+,_1)(Xr) 

where Z„(Xr) denotes a cyclinder function of order v. Applying Green's 
formula and condition (ii) gives 
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(13) lim f r*+*(l - ||?||2)(8-1)/21 u\H^ = 0. 
r->«> J 5(0,1) 

If the polynomials V$(£) satisfied Parseval's relation we could now 
proceed with the proof by following the approach used by Vekua in 
[7]. Since this is not the case we resort to techniques first used by 
Col ton in [3]. Define 

(14) g(f> Q s *(r, it)ü*(r, {*), 

and observe that g(r, £) is an analytic function of § which agrees with 
I u(r* £ ) | 2 f ° r £ real valued. From condition (i) of the theorem it can 
be shown that rn+8\ g(r, £) | is uniformly bounded for a rgr < oo, ££3?. 
Now define for fixed r and variable £ 

(15) Fr({) m f r»+*(l - U\\2V(8-1)l2)g(r^)d% 
J o 

and note that Fr(!-) is analytic in A(0, e) (if e is chosen sufficiently 
small) and for r}£a, ££A(0, €), \ Fr(£)\ is uniformly bounded. By 
applying a version of Vitales theorem for several complex variables 
[6], it can be shown using equations (13) and (15) that 

(16) lim r<»+*>/2i*e, 0 = 0 ; £ £ S(0, 1). 
r—+ oo 

Theorem 1, equation (12), and the asymptotic behavior of cylinder 
functions (cf. [7]) now shows that aM(r) = 0 for every M and hence 

*(r, i)so. 
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