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Main theorems. We will say that a manifold M satisfies condition 
S, if TT\{MXTk) and Ti(dMXTk) satisfy the conditions necessary for 
the splitting theorem to hold [ó], [9]. 

THEOREM 4. Every dosed topological manifold M, dim M^5, 
H*(M; Z 2 )=0 , and satisfying condition S, admits a PL manifold 
structure.2 

PROOF. By Theorem 3 and addendum to Theorem 2, the tangent 
bundle of Mn lifts to a PLn-bundle. By the splitting theorem [ó], [9], 
there is a PL-manifold Q of the same tangential homotopy type as 
M. As in [5], proof of (c), we may immerse If0 = Af-point in Q, to 
give Mo a PL manifold structure. By Lees' Lemma [5], i f admits a 
PL manifold structure. 

REMARKS. 1. If we are given a lift of r(Mn) to a PLn-bundle, we 
may drop the condition H*(M; Z2) = 0. 

2. If we are given a bundle map of r(M0) into T(Q), Qn a PL mani­
fold, we may drop condition S as well. 

THEOREM 5. Let Wn, n*z5, be a topological h-cobordism between PL 
manifolds. If IP(W; Z2) = 0 , then W admits a PL manifold structure 
with the given structures on the boundary. 

PROOF. Say dW=M\\JM2. Then we may define inclusions ti: M\ 
XI-+W, i2: MiXl-^>W using collar neighborhoods. (Take i i | i lf iX0 
= identity and i2| M2X1 = identity.) Also we have retractions 
r\\ W-*M\XI, r2: W—*M2XI, where for example we may take 
r2\M2: M2-*M2X1 by the identity, r2\ Mi: Mi-+M2X0 by a homo­
topy equivalence, and r2i2 — identity. Now these maps are covered 
by topological bundle maps; tt*: T I © 1 — > T = T ( W ) , I2*: T2®\—>r, and 
r2*: T—»T2©1 so that r2*i2* = identity (since M2XI is a deformation 
retract of W). Then r2Hi*: TI@1—*T2®1 is a topological bundle map. 

1 Partially supported by an NSF Grant. 
1 As first shown by Kirby and Siebenmann (by other methods), condition S may 

be eliminated. We can do this by applying Theorem 7 below to the normal disk bundle 
of a compact manifold M (condition 3 is unnecessary since the tangent bundle is 
trivial) to obtain their result that M is the homotopy type of a finite complex. The 
splitting theorem then holds with no condition on the fundamental group [9], 
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Now assume Wi* is isotopic to a PL bundle map. Enlarge W to the 
open W' = MiX(-l, 0]VWVM2X [l , 2). Then using Lees' Theorem 
we may immerse a neighborhood of W in M2XR by the bundle map 
r2*: T - * T 2 © 1 . Since r2*i2* = identity and r2*ii* is isotopic to a PL bundle 
map, we may assume the immersion # satisfies 0 2 :M 2X[O, l ] 
—*M2XR is the inclusion, and #ii: ikfiX [0, l]—>ikf2X.R is a PL im­
mersion. Thus the immersion defines a PL structure on W, which 
agrees with the given structures on the boundary. 

To show r2n2* is isotopic to a PL bundle map under the hypothesis 
that H*(W, Z2)=IP(Mi\ Z 2 ) = 0 ; note that topological (PL) bundle 
maps over r2i2 are given by cross-sections of an associated bundle 
^Top ( £ P L ) o v e r Ml w-lXh g b r e T o p n (PLn). The map PL„->Top„ in­
duces a map p: EPL—»ETop. The fibre of p is homotopy equivalent to 
Q(Topn/PLn), which has a t most one nontrivial homotopy class in 
dimensions ^w —2. This is in dimension 2, and at most of order 2. 
Thus the only obstruction to lifting a cross-section of £ T o p to one of 
E P L lies in H*(Mi; Z2) =H*(W\ Z2). 

THEOREM 6. Let Mn be a compact topological manifold with boundary 
N""1, with fundamental groups satisfying conditions S. 

(a) If H4(M, Z2) = IP(N, Z2) =0 , and n^6, M admits a PL mani­
fold structure. 

(b) If N already has a PL structure, HA(M, Z2) =IP(N, Z2) = 0 and 
n ^ 5, then M admits a PL manifold structure agreeing with the given one 
on the boundary. 

PROOF, (a) If H*(M; Z2) = 0 , then r{M) lifts to a PLn bundle. This 
induces a lift of r( iV)©l to a PLn bundle; which lifts in turn to a 
PLn-i bundle a over iV, since 7r»(PLn, PL n _i)=0, for i^n — 2. The 
lift is unique, except on the top cell of N. Since 7rn~i(PLn, PLn-i) 
£^7rn-i(Topn, Topn-i) (see proof of Theorem 3 of I), we may choose a 
to be a lift of T(N). AS in the proof of Theorem 1, N may be triangu­
lated. This reduces case (a) to case (b). 

(b) Take the double of M. I t admits a PL structure by Theorem 4. 
Hence W=M—N has a PL structure. By (9), W is collared. W 
= F f U | 5 F x [ 0 , 1). Hence M=W\JV where V is an A-cobordism 
between dW and dM. By Theorem 2, V admits a PL structure which 
extends the one on dV = dWUN. Q.E.D. 

Instead of using the splitting theorem to construct a PL manifold 
of the same tangential homotopy type, one may use the surgery tech­
niques of Browder, Novikov, and Wall [12]. As an example we get 

THEOREM 7. Let Mn be a compact connected manifold with boundary 
N, such that 
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1. each component of N except one, N0, has a PL structure. 
2. 7Ti(iVo)—>7Ti(if) is an isomorphism. 
3. IP(N; Z2)=H*(M; Z 2 )=0 . 

Then M admits a PL structure which extends the given ones on the 
boundary components. 
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