TRIANGULATION OF MANIFOLDS. II

BY R. LASHOF AND M. ROTHENBERG1

Communicated by William Browder, January 27, 1968

Main theorems. We will say that a manifold M satisfies condition S, if $\pi_1(M \times T^k)$ and $\pi_1(\partial M \times T^k)$ satisfy the conditions necessary for the splitting theorem to hold [6], [9].

THEOREM 4. Every closed topological manifold M, dim $M \ge 5$, $H^4(M; Z_2) = 0$, and satisfying condition S, admits a PL manifold structure.²

PROOF. By Theorem 3 and addendum to Theorem 2, the tangent bundle of M^n lifts to a PL_n -bundle. By the splitting theorem [6], [9], there is a PL-manifold Q of the same tangential homotopy type as M. As in [5], proof of (c), we may immerse $M_0 = M$ -point in Q, to give M_0 a PL manifold structure. By Lees' Lemma [5], M admits a PL manifold structure.

REMARKS. 1. If we are given a lift of $\tau(M^n)$ to a PL_n-bundle, we may drop the condition $H^4(M; \mathbb{Z}_2) = 0$.

2. If we are given a bundle map of $\tau(M_0)$ into $\tau(Q)$, Q^n a PL manifold, we may drop condition S as well.

THEOREM 5. Let W^n , $n \ge 5$, be a topological h-cobordism between PL manifolds. If $H^3(W; \mathbb{Z}_2) = 0$, then W admits a PL manifold structure with the given structures on the boundary.

PROOF. Say $\partial W = M_1 \cup M_2$. Then we may define inclusions $\iota_1 \colon M_1 \times I \to W$, $\iota_2 \colon M_2 \times I \to W$ using collar neighborhoods. (Take $\iota_1 \mid M_1 \times 0$ = identity and $\iota_2 \mid M_2 \times 1$ = identity.) Also we have retractions $r_1 \colon W \to M_1 \times I$, $r_2 \colon W \to M_2 \times I$, where for example we may take $r_2 \mid M_2 \colon M_2 \to M_2 \times 1$ by the identity, $r_2 \mid M_1 \colon M_1 \to M_2 \times 0$ by a homotopy equivalence, and $r_2 \iota_2 = \text{identity}$. Now these maps are covered by topological bundle maps; $\iota_i^* \colon \tau_1 \oplus 1 \to \tau = \tau(W)$, $\iota_2^* \colon \tau_2 \oplus 1 \to \tau$, and $r_2^* \colon \tau \to \tau_2 \oplus 1$ so that $r_2^* \iota_2^* = \text{identity}$ (since $M_2 \times I$ is a deformation retract of W). Then $r_2^* \iota_1^* \colon \tau_1 \oplus 1 \to \tau_2 \oplus 1$ is a topological bundle map.

¹ Partially supported by an NSF Grant.

³ As first shown by Kirby and Siebenmann (by other methods), condition S may be eliminated. We can do this by applying Theorem 7 below to the normal disk bundle of a compact manifold M (condition 3 is unnecessary since the tangent bundle is trivial) to obtain their result that M is the homotopy type of a finite complex. The splitting theorem then holds with no condition on the fundamental group [9].

Now assume $r_2 \cdot \iota_1 \cdot$ is isotopic to a PL bundle map. Enlarge W to the open $W' = M_1 \times (-1, 0] \cup W \cup M_2 \times [1, 2)$. Then using Lees' Theorem we may immerse a neighborhood of W in $M_2 \times R$ by the bundle map $r_2 \cdot : \tau \to \tau_2 \oplus 1$. Since $r_2 \cdot \iota_2 \cdot =$ identity and $r_2 \cdot \iota_1 \cdot$ is isotopic to a PL bundle map, we may assume the immersion ϕ satisfies $\phi_2 : M_2 \times [0, 1] \to M_2 \times R$ is the inclusion, and $\phi \iota_1 : M_1 \times [0, 1] \to M_2 \times R$ is a PL immersion. Thus the immersion defines a PL structure on W, which agrees with the given structures on the boundary.

To show $r_2 \iota_{L^*}$ is isotopic to a PL bundle map under the hypothesis that $H^3(W, Z_2) = H^3(M_1; Z_2) = 0$; note that topological (PL) bundle maps over $r_2\iota_2$ are given by cross-sections of an associated bundle E^{Top} (E^{PL}) over M_1 with fibre Top_n (PL_n). The map $\text{PL}_n \to \text{Top}_n$ induces a map $\rho \colon E^{\text{PL}} \to E^{\text{Top}}$. The fibre of ρ is homotopy equivalent to $\Omega(\text{Top}_n/\text{PL}_n)$, which has at most one nontrivial homotopy class in dimensions $\leq n-2$. This is in dimension 2, and at most of order 2. Thus the only obstruction to lifting a cross-section of E^{Top} to one of E^{PL} lies in $H^3(M_1; Z_2) = H^3(W; Z_2)$.

THEOREM 6. Let M^n be a compact topological manifold with boundary N^{n-1} , with fundamental groups satisfying conditions S.

- (a) If $H^4(M, \mathbb{Z}_2) = H^3(N, \mathbb{Z}_2) = 0$, and $n \ge 6$, M admits a PL manifold structure.
- (b) If N already has a PL structure, $H^4(M, Z_2) = H^3(N, Z_2) = 0$ and $n \ge 5$, then M admits a PL manifold structure agreeing with the given one on the boundary.

PROOF. (a) If $H^4(M; \mathbb{Z}_2) = 0$, then $\tau(M)$ lifts to a PL_n bundle. This induces a lift of $\tau(N) \oplus 1$ to a PL_n bundle; which lifts in turn to a PL_{n-1} bundle α over N, since $\pi_i(PL_n, PL_{n-1}) = 0$, for $i \leq n-2$. The lift is unique, except on the top cell of N. Since $\pi_{n-1}(PL_n, PL_{n-1}) \simeq \pi_{n-1}(Top_n, Top_{n-1})$ (see proof of Theorem 3 of I), we may choose α to be a lift of $\tau(N)$. As in the proof of Theorem 1, N may be triangulated. This reduces case (a) to case (b).

(b) Take the double of M. It admits a PL structure by Theorem 4. Hence W = M - N has a PL structure. By (9), W is collared. $W = \overline{W} \cup |\partial \overline{W} \times [0, 1)$. Hence $M = \overline{W} \cup V$ where V is an h-cobordism between $\partial \overline{W}$ and ∂M . By Theorem 2, V admits a PL structure which extends the one on $\partial V = \partial \overline{W} \cup N$. Q.E.D.

Instead of using the splitting theorem to construct a PL manifold of the same tangential homotopy type, one may use the surgery techniques of Browder, Novikov, and Wall [12]. As an example we get

THEOREM 7. Let M^n be a compact connected manifold with boundary N, such that

- 1. each component of N except one, N_0 , has a PL structure.
- 2. $\pi_1(N_0) \rightarrow \pi_1(M)$ is an isomorphism.
- 3. $H^3(N; Z_2) = H^4(M; Z_2) = 0$.

Then M admits a PL structure which extends the given ones on the boundary components.

BIBLIOGRAPHY

- 1. A. Haefliger and V. Poenaru, La classification des immersions cocombinatoires, Inst. Hautes Etudes Sci. Publ. Math. No. 23, 1964, pp. 75-91.
- 2. W. C. Hsiang and J. L. Shaneson, Fake tori and the annulus conjecture, Mimeographed Notes, Yale University, New Haven, Conn., 1968.
- 3. R. C. Kirby, Stable homeomorphisms, Mimeographed Notes, Institute for Advanced Study, Princeton, N. J., 1968.
- 4. J. Lees, Immersions and surgeries on topological manifolds, Mimeographed Notes, Rice University, Houston, Tex., 1968.
- 5. R. Lashof, Lees' immersion theorem and the triangulation of manifolds, Mimeographed Notes, University of Chicago, Chicago, Ill., 1968.
- 6. R. Lashof and M. Rothenberg, *Hauptvermutung for manifolds*, Conference on the Topology of Manifolds, Complementary Series in Mathematics, Prindle, Weber and Schmidt, Boston, Mass., 1968, pp. 81–105.
- 7. J. Shaneson, Embeddings with codimension two of spheres in spheres, Bull. Amer. Math. Soc. 74 (1968), 972-974.
 - 8. C. T. C. Wall, On homotopy tori and the annulus theorem (to appear).
- 9. L. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Thesis, Princeton University, Princeton, N. J., 1965.
- 10. M. Hirsch, On tubular neighborhoods, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston, Mass., 1968, pp. 63-80.
 - 11. F. T. Farrell, Ph.D. Thesis, Yale University, New Haven, Conn., 1967.
- 12. C. T. C. Wall, Surgery on compact manifolds, Mimeographed Notes, Liverpool, 1967.

University of Chicago, Chicago, Illinois 60637