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1. The Loewner representation. Let ƒ be any function in the class 
S of univalent functions on the unit disk bearing the normalization 
/(O) = 0 , /'(O) = 1. Then it is known [l ], [2], that ƒ can be represented 
as 

(1) ƒ(*) = lim e'h(z,t), 

locally uniformly in z on \z\ < 1, where h(z, •) is the solution of Loew-
ner's equation in its general form 

dh 
(2) — = - hp(h, t) a.e. in / on [0, oo ) 

it 

with the initial values 

(3) A(s ,0 )=z , |*| < l . 

Here p(-t t) denotes a suitably chosen one-parameter family of holo­
morphic functions on the unit disk having positive real part and 
normalized so that p(0, /) = 1, whose dependence on t is Lebesgue 
measurable on [0, oo) whenever the first variable is held fixed, and 
the solution of (2) is understood in the Carathéodory sense [3]. 

Conversely, if p(-, t) denotes any family of functions satisfying 
the above requirements, then the solution to the foregoing initial-
value problem is known to exist and be holomorphic and univalent 
in z on the unit disk; the limit in (1) is then also known to exist and 
to determine a function in class S [ l ], [2], 

More generally, one can consider the general solution h(z% s, t) of 
(2) for O^s^t with the initial values 

h(z,s9s) = 2, |*| < 1. 

Then, in place of (1), one has 

lim e*h(z, s, t) = g(z, s) 

locally uniformly in z for | z | < 1 , where er*g(z, s) now belongs to S 
for all s in [0, oo). The function g is absolutely continuous in s and 
constitutes an integral of Equation (2), for it is easily shown that 
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(4) «(*(•,«,<>-ƒ(«) 

for ail* in [0, oo), [l], [2], and, in particular, that 

*(i,0)-ƒ(•). 

2. Comparisons, local and global, in the class S. The identity (4) 
can be used as the basis for a local variational theory within the class 
5, by subjecting the unit disk in the A-plane to the infinitesimal trans­
formations of the semigroup of bounded univalent functions, which 
Loewner has characterized [S]. This results in a variation in the 
function ƒ for each fixed t, and, in e.g., the case of extremal problems 
for coefficients of functions in class S, it leads to a condition on the 
initial coefficients of the functions £(•, /) that generate extremal 
mappings that amounts to the Pontryagin maximum principle [4], 
and is equivalent to Schiffer's characterization of the extremal func­
tions as solutions of his quadratic differential equation [l], [6]. 

What we wish to report on now is the possibility of making global 
comparisons between the functions in class 5, in contrast to the local 
comparisons mentioned above, by considering in place of (4) the 
function G(z, t) defined by the equation 

(5) «(*(*, 0,0 = G(M) (M < 1, 0 g t < 00). 

Here h is understood to be the solution to the initial-value problem 
made up of (2) and (3) when ƒ>(•, /) is replaced by any other one-
parameter family p(-, t) that satisfies the same conditions as ƒ>(•, t). 

The function G belongs to class S for all t in [0, 00 ) and satisfies 

(6) G(*,0)-/(«) 

while (by arguments similar to those already used in [l], [2]) 

Km G(M) =ƒ(*), 
(7 ; I-»* 

locally uniformly in z on the unit disk, where ƒ is the function in 5 
generated by h in the same manner as (1). Moreover, G is absolutely 
continuous in t, locally uniformly in z, and its /-derivative is given by 

(8) dtG(z, t) - i(i , t)g'Qi{z, 0, t) [p(h(z9 /), /) - p(fa /), 0] a.e., 

where the ' denotes the derivative of g w.r.t. its first argument. 
This procedure makes it possible to join a given function ƒ in S with 

any other function ƒ in 5 along an absolutely continuous path in 5, 
thereby generalizing the procedure of §1, which constitutes the special 
case of f (z)**z in the present set-up. 
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3. Application to extremal problems for coefficients of functions in 
S. If we expand both sides of (8) in power series about the origin, we 
find that the nth coefficient of dtG is given by the expression 

(9) Y, Bm{t)\j>m{t) - pm(t)) ».e., 

where the pm and pm are the wth coefficients of p(-, t) and p('f t)t 

resp., and the Bm are certain combinations of the initial coefficients of 
the functions g and ft making them absolutely continuous as functions 
of /. Their derivatives involve the pm and pm, and when £(•, /) coin­
cides with p(-, t) the resulting expressions reduce to a set of differen­
tial equations which are already known in the local theory [l], [6]. 

To establish the global extremality in 5 of the real part of the nth 
coefficient of a function ƒ generated by (2), it would clearly be enough 
to show that the real part of (9) is nonpositive for a.e. t whatever the 
choice of the pm (so long as they come from functions admissible in 
the sense of §1), for then the real part of the nth coefficient of the 
function G would be nonincreasing. In view of (6) and (7), the global 
extremal property would thereby be verified. 

In practice, it is desirable to restrict the competing functions 
P('tt) by placing a limitation on the range of their initial coefficients. 
In certain cases it can be shown by using the symmetries of the coeffi­
cient body Sn for functions in S that this limitation results in no loss 
of generality. 

4. Illustration: the case « = 3. We shall verify the extremal prop­
erty of the third coefficient of the Koebe function/(g) = z/(l—z)2 in 
the class of functions J(z)=z+â2Z2+âzzz+ • • • in 5 which have 
Re #2^0; an analogous result will hold for f(z) =z/(l+z)2 when 
Re &^0. We have p(hf t) = (1 -A)/ ( l +*) and g(h, t) =e'h/(l -h)2; if 
we put f(h, 0 = 1+2 2 X , pm(t)hm and £(*, t) =*-'(*+ £«-2 lm(t)*») 
then the real part of (9) for n = 3 becomes twice 

(10) Re {Bi(t) [ - 1 - MO] + Bt(Q [l - fc(0]}, 

where 

(11) Bx(t) - 25,(0*-* + 46~2«, B2(t) = e-2'. 

We compute from (2) 

dh2(t) 
—~T - - 2p1(t)er< a.e., 

at 
(12) 

R e — 1 ± = Re {- 45|(0M0«~' - 2fc(0«-"} a.e., 
it 
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and therefore 

(13) — i ü - - Bxifi + 4<r»[- 1 - p1(t)] a.e., 
ai 

while from (11) we deduce that -Bi(O) =4 . 
In order to make use of the assumption that Re #2^0, we prove 

the following lemma. 

LEMMA. If ût — limt+* b2(t) has nonnegative real part, then the point 
(#2, Re âz) can be reached by a solution of (12) that starts at the origin 
when / = 0 and has Re pi(t) ^ 0 a.e. in [0, 00). 

PROOF. In view of (12), this is the same as saying that Re b2{t) can 
be assumed to be monotone nondecreasing. Suppose it is not. Then 
there will be two values £<rç of t such that Re 52(£) = Re 52(77). On the 
interval [£, rj] we can, if need be, replace p(-, t) by the functions 
(also of positive real part) 

?(*, 0-![#(*, 0+ (#(-*, OH 
- 1 + 2* Im px(t)h + 2 Re p2(t)h

2 + - • • . 

This makes Re h2{t) constant on [£, 1/] and leaves Im h2{t) unchanged, 
while in the equation for Re dhz{t)/dt the only change is that the term 

- 4 Re S2(0 Re ^iW*-' 

is now missing. But 

ƒ ' - 4 Re b2(t) Re px{()<r*dt = [Re S2(T?)]2 - [Re S2(£)]2 = 0, 

so that the missing term does not affect the value of Re 3̂(77). By the 
Rising Sun Lemma, there are at most a countable number of disjoint 
intervals in [0, 00) where this alteration of p(-, t) needs to be made, 
so that the altered p(-, t) remains measurable in t and yields a trajec­
tory of (12) that satisfies the assertion of the lemma. 

A similar reasoning, in which p(h, t) is replaced by 

q(h, t) - *[«*, t) + (P(h, I))-], 

shows that we can also assume that Im pi(t) does not change sign on 
[O, 00). For Re pi(t) and Im p\{t) restricted in this way, Equation 
(13) and the initial condition J3i(0) = 4 imply that 

Im£i(01m£i(t) ^ 0 a.e., 
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and 

4<r"â ReJ3i(0 g 4e~' 

(since now 0 ̂  1+Re pi(t) ^ 1 a.e.). 
To prove that (10) is nonpositive it is therefore enough to show that 

(14) - 4[1 + Re px(t)] Û Re p*(t) - 1 a.e. 

We may restrict pi(t) and fc(t) to the form exp(i0(/)), exp(2iB(t)), 
resp., for 0(t) real-valued, either by appealing to Loewner's theory 
of slit mappings [S] or, even better, to the Carathéodory representa­
tion of pi(t) and pi(t) [l], [7]. Then (14) is equivalent to the inequal­
ity — 2[l+cos 0(t)]2^*0 a.e., and the monotonicity of the real part 
of the third coefficient of G is thereby proved. 

This gives us Loewner's inequality Re #3^3 when Re #2^0, and 
at the same time shows that equality holds only when ƒ is the Koebe 
function z/{\ —z)2. (If one inspects the real part of the second coeffi­
cient of G, it also is seen to be monotone decreasing, so the same 
Koebe function is extremal there, too.) 

By a variant of the foregoing procedure one can prove a number of 
other inequalities, among which is Jenkins' inequality 

Re[e**(a3-^)-Xe*a,]:gl+3Xy8 + (X2 log 4/X)/4 

for 4> real and 0<X^4 [8]. 
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