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Introduction. In this paper we consider smooth knots, i.e., smooth 
embeddings <£: Sn—>SW+2, n^3. Two knots <j> and rj are said to be 
equivalent if there is a diffeomorphism ƒ : Sn+2—>Sn+2 such that 
f<t>(Sn) = rj(Sn). The embedding <j> extends to an embedding $: SnXD2 

—>Sn+2, and any two such extensions are ambient isotopic relative 
to SnX0. Hence if A = c\(Sn+2-$(SnXD2)), the pair (A, dA) is deter­
mined up to diffeomorphism by the equivalence class of <f>. We call 
(A, dA) the complementary pair, or simply the complement, of the 
knot <j>. In this paper we show that if iriA, the fundamental group of 
the knot, is infinite cyclic, then there is at most one knot inequivalent 
to <j> with complementary pair (B, dB) of the same homotopy type as 
(A }dA). This result is of interest because for any n^ 3 there are many 
inequivalent knots <t> : Sn—*Sn+2 with fundamental group Z, see for 
example [12]. (The result also holds in the P.L. case, provided 4> 
extends to a P.L.-embedding $: SnXD2->Sn+2.) 

1. Knots with diffeomorphic complements. In [4], Gluck showed 
that homeomorphisms of S2XS1 are isotopic if and only if they are 
homotopic and used this result to conclude that there are at most two 
knots </>: S2—*SA with homeomorphic exteriors. In [ l ] , W. Browder 
studied the pseudo-isotopy classes of diffeomorphisms (and P.L. 
equivalences) of S1XSn for n^5. He showed that two P.L. equiva­
lences are pseudo-isotopic if and only if they are homotopic. For the 
group ^>(SnXSl) of pseudo-isotopy classes of diffeomorphisms, he 
obtained the exact sequence 
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X» + Tn+i _» j ) ^ x 51) _> 8 ( 5 n x 51) _> o, 

where 8 ( 5 n X 5 0 —Z2+Z2+Z2 is the group of homotopy classes of 
homotopy equivalences of SxXSn with itself. Using this result 
Browder, following Gluck, showed that there are at most two in-
equivalent knots 0 : Sn-»Sn+2 , w ^ 5, with diffeomorphic complements. 
In this section we show that this result is also valid for w = 3 or 4. 

PROPOSITION 1.1. Let Mn+1, w è 4, be a P.L. manifold of the same 
homotopy type as S1XSn. Then Mis P.L. homeomorphic to S1XSn. 

PROOF. For w è 5, it follows from the P.L. version of the main 
theorem of [2] or [3] that Mn+l is a P.L. bundle over S1 with fiber of 
the homotopy type of Sn and hence P.L. equivalent to Sn. Therefore 
M can be obtained from SnXl by identifying the two boundaries 
using an orientation preserving P.L. homeomorphism of Sn with 
itself. But such a P.L. homeomorphism is isotopic to the identity. 

For w = 4, this proposition is just the P.L. version of a theorem of 
[8]. (See also Theorem 2.3 below.) 

COROLLARY 1.2. If w = 4, 5, any smooth Mn+1 of the same homotopy 
type as SnXS1 is diffeomorphic to SnXSx. 

PROOF. In these dimensions P.L. manifolds have unique smooth 
structures, see [5]. 

THEOREM 1.3. For w = 3, 4, any diffeomorphism d of SnXS1 with 
itself which is homotopic to the identity is pseudo-isotopic to the identity. 

PROOF. Let Mn+2 = Dn+1XS1\Jd Dn+1XSK Since d is homotopic to 
the identity, M has the homotopy type of . S ^ X S 1 , and so is diffeo­
morphic to Sn+1XS\ by Corollary 1.2. Let g: Sn+lXSl->M be a 
diffeomorphism. Writing 5 n + 1 X5 1 =P n + 1 X5 1 VJP w + 1 X5 1 , we may 
assume (by the tubular neighborhood theorem and a Whitney em­
bedding theorem) that g carries the first summand in the decomposi­
tion of i S ^ X S 1 into the first summand in the decomposition of M 
and that its restriction to these summands is a SO(w+l)-bundle 
map. Hence, after restricting to the second summands and composing 
with an SO (w+1)-bundle map, we get a diffeomorphism h: D^^-XS1 

—>Dn+1XS1 extending d; i.e., h(x, y) =d(x, y) for x in dDn+1 and y in 
S1. Let Do = \Dn+l be the disk of radius J. Then by the tubular neigh­
borhood theorem again, we can also insist that h(DoXSl) —D0XS1 

and that ft| P0XS 1 is an SO(w+l)-bundle map. Hence d is pseudo-
isotopic to a bundle map dDoXS^dDoXS1, which represents 
J8ETTI(SO(W + 1 ) ) =Z2 , say. Since d is homotopic to the identity, j8 = 0, 
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(since the nontrivial element of w\(SO(n+l)) represents a nontrivial 
element of 8 (Sn X S1), by [l ], for example). Hence d is pseudo-isotopic 
to the identity. 

COROLLARY 1.4. For w = 3, 4, let 3D(5nX51) be the group of pseudo-
isotopy classes of diffeomorphisms of Sn X S1 into itself. Then the natural 
map $>(SnXS1)-*&(SnXS1)^Z2+Z2+Z2 is an isomorphism. 

PROOF. By Theorem 1.3, it is monic, and each generator of S(Sn X S1) 
is represented by a diffeomorphism. (See [l].) 

REMARK. For all n ^ 3 , arguments similar to the above can also be 
used to show that any homotopic P.L. homeomorphisms of SnXSl to 
itself are (P.L.) pseudo-isotopic. 

The arguments of [ l ] can now be extended to lower dimensions by 
using Corollary 1.4. This yields the main result of this section. 

THEOREM 1.5. Let n è 3. Then there are at most two inequivalent knots 
4>: Sn—*Sn+2 with diffeomorphic complements. 

2. Knots with complements of the same homotopy type. 

THEOREM 2.1. Let nè 3. Let <£»: SnXD2->Sn+2, i = l,2,be smooth (or 
P.L.) embeddings. Let i4< = c l (5 n + 2 ~Im <£») and suppose that TiAi — Z. 
Then if (Au àA\) and (A2t dA2) have the same homotopy type (as pairs), 
A\ and At are diffeomorphic (resp. P.L. equivalent). 

COROLLARY 2.2. If <t>: Sn—>5n+2, n}z3, is a smooth knot with funda­
mental group Z and complement (A, dA), then there is at most one in-
equivalent knot with exterior (B, dB) of the same homotopy type as 
(A, dA), 

Corollary 2.2 follows immediately from Theorem 2.1. We recall 
that in case A has the homotopy type of a circle, </> is actually un­
knotted. (See [6] and [9].) 

PROOF OF THEOREM 2.1. We concentrate on the smooth case. The 
P.L. case can be handled by similar methods. First assume » ^ 4 . By 
Alexander duality and the universal coefficient theorem, H'(A ; G) = 0 
for j ^ 2 and H>(A; G)=G for j = 0, 1, G any abelian group. Now let 
h: (Ai, dAi)—>(A2, dA2) be a homotopy equivalence of pairs, and let 
VhE[A2; F/O] be the "characteristic ^ /0-bundle" of h. (See [7] or 
[ l l ] . ) F/O is connected and TI(F/0) = 0, and so it follows from Theo­
rem 3 of Chapter 8, §4 of [lO], that [A2; F/0]=H2(A2; ir2(F/0)) 
—H2(A2; Z2) = 0. So rjh — 0. ([A2\ F/O] =homotopy classes of maps of 
A 2 into F/O.) This means that there is a tangential cobordism of 
(Ai, dA\) with (A2; dA2); i.e. there is a parallelizable Wn+l with 
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dW=Ai\JdoWUA2,doW acobordism of dAi withdA2 , and a retraction 
r: (W, dW)—>(A2i dA2) such that r\ (Au dAi) is homotopic to h. (See 
[7], [8] or [13].) Now, according to Wall [14] (see also 7.4 and 7.5 of 
[l3]), one can perform surgery relative to Ai\JA2 (i.e. without doing 
any modifications on Ai<JA2) to get an 5-cobordism. (This uses the 
fact that TiA2 = Z.) Thus we get an s-cobordism of (Au dAi) with 
(A2y dA2), and so the relative s-cobordism theorem applies to prove 
2.1 for n^4. 

Now take n = 3. Then we have to use the following result from [8]. 

THEOREM 2.3. Let M be obtained from Sh by surgery on an embedded 
S3. Then any manifold of the same homotopy type as M is diffeomorphic 
toM. 

Assuming Theorem 2.3, let h: (Au dAi)-*(A2, dA2) be a homotopy 
equivalence. Since every homotopy equivalence of SlXS* with itself 
extends to a homotopy equivalence of S1 XD* with itself, it is easy to 
see that there is a homotopy equivalence k: A-iSJ'f D^XS1 

—ïA^+JD^XS. Hence by Theorem 2.3, these manifolds are diffeo­
morphic. Using a Whitney theorem and the tubular neighborhood 
theorem again, it follows that there is a diffeomorphism of these mani­
folds which restricts to a diffeomorphism of Ai with A2. (Note that 
the Svs in the second summands represent generators of the respec­
tive fundamental groups of these manifolds.) 

REMARK. The above proof of 2.1 for n ^ 4 is essentially a part of the 
proof that if (M, dM) is a smooth manifold pair such that the inclu­
sion induces an isomorphism of wi(dM) with TTIM, then the "con­
cordance classes of homotopy smoothings of (Jkf, dM)" are in 1-1 
correspondence with [M; F/O] via the map induced by taking the 
"characteristic .F/O-bundle" of a homotopy equivalence. This result 
is discussed in the simply-connected case in [7] and [ l l ] . 

Note. Theorem 2.1, for n^S, was proved for fibred knots by 
W. Browder (Manifolds with TTI = Z , Bull. Amer. Math. Soc. 72 (1966), 
238-244, Corollary 2.4). Browder informs us that the requirement 
that the knots be fibred can be eliminated in his approach using 
recent results of Farrell-Hsiang. 
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