STABLE MANIFOLDS FOR HYPERBOLIC SETS

BY MORRIS W. HIRSCH AND CHARLES C. PUGH

Communicated by Jürgen K. Moser, August 20, 1968

1. Introduction. We present a version of the "Generalized stable manifold theorem" of Smale [2, p. 781]. Details will appear in the Proceedings of the American Mathematical Society Summer Institute on Global Analysis.

Let *M* be a finite dimensional Riemannian manifold, $U \subset M$ an open set and $f: U \rightarrow M$ a C^k embedding $(k \in \mathbb{Z}_+)$. A set $\Lambda \subset U$ is a hyperbolic set provided

(1) $f(\Lambda) = \Lambda$;

(2) $T_{\Lambda}M$ has a splitting $E^* \oplus E^u$ preserved by Df;

(3) there exist numbers C > 0 and $\tau < 1$ such that for all $n \in \mathbb{Z}_+$,

 $\max\{\|(Df \mid E^{s})^{n}\|, \|(Df \mid E^{u})^{-n}\|\} \leq C\tau^{n}.$

It is known (J. Mather; see also [1]) that the Riemannian metric on M can be chosen so that C=1; we assume C=1 in what follows. The splitting is unique.

Notation. If X is a metric space, $B_r(x) = \{y \in X | d(y, x) \leq r\}$. If E is a Banach space, $BE = B_1(0)$. If $E \to X$ is a Banach bundle, $BE = \bigcup_{x \in X} BE_x$.

A submanifold $W \subset M$ is a stable manifold through x of size β if $W \cap B_{\beta}(x)$ is closed and consists of all $y \in B_{\beta}(x)$ such that $f^{n}(y)$ is defined and in $B_{\beta}f^{n}(x)$ for all $n \in \mathbb{Z}_{+}$.

An unstable manifold is defined to be a stable manifold for f^{-1} . Unstable manifolds are easier to handle in proofs, but stable ones are easier to describe notationally. Hence, we confine ourselves to the stable case.

A C^k stable manifold system with bundle E is a family of C^k submanifolds $\{W_x\}_{x \in \Lambda}$ such that

(4) there exists $\beta > 0$ such that each W_x is a stable manifold through x of size β ;

(5) E is a vector bundle over Λ , and there is a map $\phi: V \rightarrow M$ of a neighborhood V of the zero section of E such that ϕ maps each $V \cap E_x$ diffeomorphically onto W_x ;

(6) ϕ is fibrewise C^k in this sense: Let $H: A \times R^q \to p^{-1}A$ be a trivialization of E over $A \subset \Lambda$ with $H(A \times D^q) \subset V$. Then each map $\theta_x = \phi \circ H | x \times D^q: D^q \to M$ is C^k , and $\theta: A \to C^k(D^q, M)$ is continuous.

2. Existence and uniqueness.

THEOREM 1. Let Λ be a compact hyperbolic set for $f: U \rightarrow M$. Then there exists a C^k stable manifold system $\{W_x\}_{x \in \Lambda}$ with bundle E^* such that

(a) each W_x is tangent to E_x^s at x;

(b) $(W_x - \partial W_x) \cap W_y$ is an open (possibly empty) subset of W_y for all x, y in Λ ;

(c) there exist numbers K > 0 and $\lambda < 1$ such that if $x \in \Lambda$, $z \in W_x$ and $n \in Z_+$ then $d(f^n(x), f^n(z)) \leq K\lambda^n$.

The proof is based on the following stable manifold theorem for a hyperbolic fixed point in a Banach space. The case k=1 is essentially contained in Chapter IX, Lemma 5.1 of Hartman [5].

Let $L(\cdot)$ denote Lipschitz constant.

THEOREM 2. For i=0, 1 let T_i be an invertible linear operator on a Banach space E_i such that $\max\{||T_1^{-1}||, ||T_0||\} \leq \tau < 1$. There exists $\epsilon > 0$, depending only on τ , with the following properties. Put $E = E_0 \times E_1$ and $T = T_0 \times T_1$.

(a) If $f: BE \to E$ satisfies $\max\{|f(0)|, L(f-T)\} < \epsilon$, there exists a unique map $g: BE_0 \to BE_1$ such that

graph
$$g = BE \cap f^{-1}(\text{graph } g);$$

(b) $x \in \text{graph } g \text{ if and only if } f^n(x) \in BE \text{ for all } n \ge 0;$

(c) $L(g) \leq 1$; and g is C^k if f is C^k , and g depends C^k continuously on f.

Such a T is a hyperbolic linear map. We call g a stable manifold function for f.

OUTLINE OF PROOF OF THEOREM 1. Let S^b denote the Banach space $S^b(T_{\Delta}M)$ of bounded sections of $T_{\Delta}M$, and $S^c \subset S^b$ the closed subspace of continuous sections. Let $B^b = BS^b$ and $B^c = BS^c$ denote the unit balls. For $x \in \Lambda$ let $e_x \colon M_x \to M$ be the exponential map. If the metric on M is multiplied by a large constant there will be a C^k map $f_b \colon B^b \to S^b$ given by the formula

$$f_b(\sigma)f(x) = e_{fx}^{-1}fe_x\sigma(x).$$

(We motivate the definition of f_b by considering the Banach manifold $\mathfrak{M}(\Lambda, M)$ of bounded maps $\Lambda \rightarrow M$ and the local diffeomorphism

$$F:\mathfrak{M}(\Lambda, U)\to\mathfrak{M}(\Lambda, M)$$

given by

$$F(h) = f \circ h \circ (f^{-1} | \Lambda).$$

150

A coordinate chart for $\mathfrak{M}(\Lambda, M)$ with values in $S^{\mathfrak{b}}(T_{\Lambda}M)$ is obtained by letting the section σ correspond to the map $x \mapsto e_{x}\sigma(x)$ of Λ into M. The expression for F in these coordinates is then $f_{\mathfrak{b}}$.) This is the natural action of f on sections σ .

The derivative of f_b at 0 is the hyperbolic linear map $Df_b(0)\sigma = Df \circ \sigma \circ f^{-1}$; the corresponding splitting of S^b is $S^b(E^s) \oplus S^b(E^u) = S^b_s \oplus S^b_u$. We may assume $L(f_b - Df_b(0))$ so small that by Theorem 1, f_b has a C^k stable manifold function $G^b: B^b_s \to B^b_u$ (where $B^b_s = BS^b_s$, etc.). Similarly let $G^c: B^c_s \to B^c_u$ be the stable manifold function of $f_e = f_b | B^c: B^c \to S^c$.

LEMMA. If $x_0 \in \Lambda$ and σ_1 , $\sigma_2 \in B^b_s$ are such that $\sigma_1(x_0) = \sigma_2(x_0)$ then $G^b(\sigma_1)x_0 = G^b(\sigma_2)x_0$.

PROOF. $G^b(\zeta)$ is the unique section ξ such that $|f_b^n(\zeta x, \xi x)| \leq 1$ for all $n \in \mathbb{Z}_+$ and $x \in \Lambda$, by Theorem 2(b). Applying this to

$$\zeta_i(x) = 0 \qquad \text{if } x \neq x_0, \\ = \sigma_i(x_0) \qquad \text{if } x = x_0$$

proves the lemma.

The lemma implies that $G^c = B^b | B^c_s$, and that there is a function $H: BE^s \to BE^u$ such that $G^b(\sigma) = H \circ \sigma$. Also $G^c(\sigma) = H \circ \sigma$, implying the continuity of H. Each map $H_x: BE^s_x \to BE^u_x$ is C^k . The map $\phi: BE^s \to M$ is defined by $\phi(y) = e(y, H(y))$. It can be shown that ϕ is fibrewise C^k by writing ϕ as the composition.

$$BE^{s} \xrightarrow{(\chi, p)} B^{c}_{s} \times \Lambda \xrightarrow{G^{c} \times 1} B^{c}_{u} \times \Lambda \xrightarrow{v} M$$

where p is the bundle projection of E^s ; $\chi: BE^s \to B^s_s$ is a fibrewise C^k map assigning to each $y \in BE^s$ a section of E^s through y of norm ≤ 1 ; and v is the evaluation map $v(\sigma, x) = \sigma(x)$.

3. Smoothness of the splitting of $T_{\Lambda}M$.

THEOREM 3. Let $f: U \to M$ be C^2 , and suppose Λ is a compact hyperbolic set which is a C^2 submanifold. Then E^* is a C^1 subbundle of $T_{\Lambda}M$ provided $\|Df| E^u \| \cdot \|Df^{-1}| E^u \| \cdot \|Df| E^* \| < 1$. In particular this holds if E^* has codimension 1.

The special case $\Lambda = M$ gives

COROLLARY 4. Let f be a C^2 Anosov diffeomorphism of a compact manifold M. If the stable manifolds have codimension 1 they form a C^1 foliation of M.

1969]

This was stated for dim M=2 in Anosov [4]. On the other hand, Arnold and Avez [3] state that if E^* has dimension 1 then the stable manifolds form a C^1 foliation.

OUTLINE OF PROOF OF THEOREM 3. Give $T_{\Lambda}M$ a C^1 splitting $F^* \oplus F^u$ approximating $E^* \oplus E^u$. For each $x \in \Lambda$ the subspace $E_x^* \subset M_x$ is the graph of a linear map $G_x: F_x^* \to F_x^u$, and

graph
$$G_{fx} = Df(x)(\text{graph } G_x).$$

We consider G_x as an element in the bundle $L \to \Lambda$ whose fibre over x is the Banach space L_x of linear maps $F_x^{\bullet} \to F_x^{u}$; then G is a section of L invariant under the map $\Gamma: BL \to BL$ defined as follows. Write $Df^{-1}: F^* \oplus F^u \to F^* \oplus F^u$ as a matrix

$$\begin{bmatrix} AB\\ CD \end{bmatrix}$$

where $A: F^{\bullet} \to F^{\bullet}$, $B: F^{u} \to F^{\bullet}$, $C: F^{\bullet} \to F^{u}$, and $D: F^{u} \to F^{u}$ are maps covering $f^{-1}: \Lambda \to \Lambda$. Define $\Gamma_{x}: L_{x} \to L_{f-1x}$ by

$$\Gamma_x(\lambda) = (C_x + D_x\lambda) \circ (A_x + B_x\lambda)^{-1}.$$

Theorem 3 is proved once we know that G is C^1 . This follows from

THEOREM 5. Let $E \to M$ be a C^1 Banach bundle. Let $h: M \to M$ be a diffeomorphism covered by a C^1 map $\Gamma: BE \to BE$. Let $\alpha < 1$ be such that each map $\Gamma_x: BE_x \to BE_{hx}$ has Lipschitz constant $\leq \alpha$. Then BE has a unique section σ invariant under Γ . Moreover σ is C^1 provided $\|Dh^{-1}\| < \alpha^{-1}$.

References

1. R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), 163-166

2. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

3. V. I. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris, 1967.

4. D. V. Anosov, Roughness of geodesic flows on closed Riemannian manifolds of negative curvature, Dokl. Akad. Nauk. SSSR 145 (1962), 707-709=Soviet Math. Dokl. 3 (1962), 1068-1069.

5. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720