
A FACTOR THEOREM FOR FRÉCHET MANIFOLDS 

BY R. D. ANDERSON AND R. SCHORI1 

Communicated by R. D. Anderson, August 9, 1968 

1. Introduction. A Frechet manifold (or F-manifold) is a separable 
metric space M having an open cover of sets each homeomorphic to 
an open subset of the countable infinite product of open intervals, s. 
A Q-tnanifold is a separable metric space M having an open cover of 
sets each homeomorphic to an open subset of the Hubert cube, I90. 
I t is known that all separable metric Banach manifolds modeled on 
separable infinite-dimensional Banach spaces are F-manifolds. The 
following are the principle theorems of this paper. 

THEOREM I. If M is any F-manifold, then sXM is homeomorphic 
to M. 

THEOREM I I . If M is any Q-manifold, then I*XMis homeomorphic 
to M. 

Since 5 is known, [ l ] or [3], to be homeomorphic to s XI™, from 
Theorem I we immediately have the following. 

COROLLARY. If M is any F-manifold, then Ie0 X M is homeomorphic 
to M. 

Almost identical proofs of Theorems I and II can be given. To 
emphasize the ideas of our proofs of Theorems I and II we shall out­
line instead a proof of the similar but notationally easier 

THEOREM I ' . If M is any F-manifold and J° is the open interval 
( — 1, 1), then J°XM is homeomorphic to M. 

2. Lemma 2.1 implies Theorem I'. 
DEFINITION. Let r be a map, i.e. continuous function, of a space X 

into the closed unit interval [0, l ] . Let J°(0) = {O} and for 26(0, l ] , 
let Jo(t) = (-t, t). Then J« X'X={(y, x)eJ°XX:yeJ°(r(x))} is 
the variable product of J° by X (with respect to r). 

LEMMA 2.1. Let U be an open subset of s, let VQW<Z U where Wis 
open and V is closed in U, and let J° Xr° U be a variable product of J° 

1 This paper is a brief resume of a paper Factors of infinite-dimensional manifolds, 
submitted by the authors to Trans. Amer. Math. Soc. The research was supported in 
part under NSF grants GP 6867 and GP 8637. 
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by U. There exists a homeomorphism H of J° Xro U onto a variable 
product J° Xr U such that (1) r g r0, (2) r(V) = 0, and (3) 
H\ J° Xr0 [(CAWOUrö-KO)] is the identity. 

OUTLINE OF A PROOF THAT LEMMA 2.1 IMPLIES THEOREM I'. Since 
M is separable and metric, there exists a countable star-finite open 
cover G of M with sets homeomorphic to open subsets of s. (By star-
finite cover we mean a cover such that the closure of each element 
intersects only finitely many closures of other members of the cover.) 
Thus if VC U where £/£G and V is closed in M and J° Xr0 M is a 
variable product of J° by M, then by taking an open set W in M 
such that WO V and CIM WC. U, Lemma 2.1 will imply the existence 
of a homeomorphism of J° Xr0 U that has an automatic extension to 
a homeomorphism H of J° Xro M where (1) r^r0, (2) r(V) = 0, and 
(3) H\j° Xro [(AfXZOU'ö-^O)] is the identity. 

As suggested by Theorem 2 of [2], we take a special ordering of the 
elements of G, say { Z7*}oo. Now take a cover { F,}t>o of M where, 
for each i > 0 , F» is a closed set contained in £/*. For each i > 0 , let i2\-
be a homeomorphism from / ° X7"*""1 M onto J° Xr i Jli* where 
fiSri-i^ • • • ^r 0 = l, r<(7<)=0, and H<| 7° X"-1 (M\UX) is the 
identity. Then (Hi o • • • o Hi)»>o converges to a homeomorphism of 
J°XM onto {0} X Jlf which is homeomorphic to M. 

3. Two lemmas leading to Lemma 2.1. Let s= H » o J* where for 
each i > 0 , J? = 7°. Let x: J°Xs-*s be the natural projection onto 5 
and for n>0, let 7rw be defined on s as follows. For z = (si, z2, • • • ) £ s , 
let TTnOs) = O&i, • • • , z», 0, 0, • • • ). Also, for Y a space and ƒ: s—»F, 
define/*: / 0 X * - > F b y / * = / T T . 

LEMMA 3.1. There exists a map 

h: (7° X s) X [0, 1] X [l, *)-*J°Xs 

such that if tCü [0, l ] and wG [l, °°) are fixed where n^u, the map 

H:J°Xs-+J°Xs 

defined by H(p)=h(p, t, u) for pGJ°Xs is a homeomorphism of J°Xs 
onto J° Xr s where (1) r = l— /, (2) if t = 0, H is the identity, and 

OUTLINE OF PROOF. It suffices to describe h. We first describe for 
any integer n > 0 a map h' of (J°Xs) X [0, 1) X {n\ onto J°Xs. 

For x = (#o, tfii • • • ) E / ° X s , let A'(#> 0» #) = * and as t varies from 
0 to £ let the 0th and (n+l)th coordinates of x be "rotated" so that 
at * = §, (#o, ffn+i) becomes (#»+i, — *o) while for 0 ^ / g J all other 
coordinates are left fixed. 
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Thus, h'(x, | f n) = (*«+i, *i, • • • , xny —x0, xn+2, • • • )• For i>0, as 
t varies from 1—2~< to 1-2-*-1 , "rotate" the Oth and (n+i+l)th 
coordinates leaving all other coordinates fixed so that for each i > 0 , 

h'(x} 1 - 2-*, w) 

To define A from A7 we specify that A (#, 1, n) = (0, #1» • • * 1 Xnt X01 
—Xn+i, — #n+2, • • • ) and we introduce for any time t<l, a factor 
of 1—/ in the 0th coordinate place of h'. Indeed for each integer 
« è 1, h\ (J°Xs) X [0, l ] X {«} becomes an isotopy. I t is now possible 
to extend the domain of h for values of u between n and n+1 by use 
of "rotations" similar in nature to the "rotations" used in defining hf 

for a fixed n. 
An open set E of 5 is an n-basic open set in s if £ = £1X • • • XEn 

X IIt>n J? where each £»• is open in J? and is a subinterval of J j . 
DEFINITION. Let Wbe open in s and let {Gt} be a star finite collec­

tion of mt-basic open sets in s whose union is W. For each xÇz W let 

mx = minimum{w*: # £ G»-}. 

Let F be a space. A map ƒ : IF—• F is a local product map of W with 
respect to the d and ra* if ƒ(*) =ƒ ( T ^ O O ) for each a;£PF. If, addi­
tionally, F = [l, 00) and f(x)^mz for each xÇzW, then ƒ is a ZocaZ 
product indicator map of W with respect to the d and the w»-. 

The strategy is to replace the t and u of Lemma 3.1 by local prod­
uct maps. The following technical lemma (not proved here) asserts 
the existence of the proper type of local product maps. 

LEMMA 3.2. Let U be an open subset of s and let VC.WC.U and 
A CU where W is open and V and A are closed in U. There exist a 
countable star finite collection {d} of m^basic open sets in s whose 
union is W\A and maps <f>: U\A—>[0, l ] and g: W\A—»[l, oo) such 
that (1) </>(V\A) = l, (2) </>((U\W)\A)=0, (3) <j>\ W\A and g are a 
local product map and a local product indicator map, respectively, of 
W\A with respect to the d and ra4-, and (4) g is unbounded near A, 
that is, for any xÇzAr\Cl(W\A) and n>0, there is a neighborhood 
B(pc) such that g\ (W\A)r\B(x)>n. 

4. Proof of Lemma 2.1. By Lemma 3.2 take a star finite collection 
{d} of w»-basic open sets and the maps <j> and g for the case when 
A=ro-l(0). Now, let 

h: (7° X s) X [0, 1] X [l, <») - + / ° X * 
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be the map of Lemma 3.1 and define 

# i : / ° X WVo-KO)-+/° X * 

by Hi(p)=h(p, <t>*(p), g*(p)) for pE^XW^^O). I t can be shown 
that Hi is a homeomorphism onto J° X r i W\ro~l(0) where ri = l — <f>. 
Clearly the map k from J° Xr0 W\rs-l(0) to J °X P F V T K O ) defined by 
k(y> 2) = (jrô"1(z)> z) is a homeomorphism. Also k~lHik is a homeo­
morphism from J°Xro W W ( 0 ) onto J° X r WVo *(0) where f = (1 - 0 ) r o . 
Now define H: J<>Xr« U->J°Xr U by H=k~1H1k on /°Xr<> W\r^l(0) 
and i î = i d e n t i t y on J"°X [(U\W)Vrïl(0)]. We show that H is con­
tinuous. Since <f>((U\W)\rQ1(0))=0, from condition 2 of Lemma 
3.1 it follows that i î | 7° XCT^rJ" *(())) and the identity map on 
J°X [(t/\TïOVô"x(0)] are compatible. To show that these are com­
patible with the identity / °X r ° ^ ( O ) we check the coordinatewise 
continuity of H. The continuity of r0 gives the continuity of H on the 
first, or J°, coordinate and g becoming unbounded near ^ ( O ) yields 
the continuity of i ? o n the second, or Z7, coordinate. The other condi­
tions of Lemma 2.1 are easily seen to be satisfied. 
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