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We present here in general terms the idea of the mean of a function 
relative to a "weight function" w(£, v), special instances and applica­
tions appearing elsewhere [ l ] , [2]. 

1. The weight function. If X~ [h, k] is a real interval, (J, A, y) a 
finite measure space with /JL(I) = 1, and w(%, v) a nonnegative function 
on XXI which, for each v of ƒ, is measurable, and positive a.e. on X, 
then the indefinite integral 

(1) W(x,v)~ f'w&v)di 
J h 

is defined on XXI, and the function 

W(x) = I W(x, v)dii, xE.X 

which we assume to exist, is continuous and strictly increasing on X, 
as is W(xy v) for each v. 

2. The mean of a function. Let x(v) be any ju-integrable function 
on 7 to X for which the integral functional 

°WX = f W(x(v), v)dfi 

exists. Letxu be the essential upper bound of x{v) on / , i.e., the g.l.b. 
of all real x for which /*{*> | x{v)>x} =0 , the essential lower bound 

1 Work performed under the auspices of the U. S. Atomic Energy Commission. 
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xi being analogously defined. Clearly x(y) is constant ju-a.e. if and 
only if xi=xu. 

Referring to (1), it is apparent that the continuous, strictly in­
creasing function 

has a unique zero b on X, namely 

called J&£ w^aw 0/ #(P) relative to w(%> v). For, if a^) is a constant 
Xo, jtf-a.e., we have B(x0) = 0; otherwise we see that B(xi) <0<B(xu), 
so that B(b)~0 for a unique b on (#j, xw). 

3. The principal theorem. For an arbitrary bounded, monotone 
nondecreasing function g(£) on X, we analogously define 

G(x,v)= fXg(^)w^yv)dè 
J h h 

on XXI, and assume the existence of 

Q(x) = I G(#, y)rf/i, « G X 

and of 

For the function 

(*) = J G(x, v 

% = ƒ G(»W, *)**. 

C(«) - f f «ftMfc *)<%*M = 9(*) ~ 9, 
J I J x(v) 

we then have the basic 

THEOREM. 

(2) C(b) £ 0 

or 

gCw-iCw.)) = 9,. 

Equality holds if and only if x(v)^by /jL-a.e., or g(£) = g(6) everywhere on 
the open interval (xi, xu). 
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The inequality is rendered transparent by splitting I into the 
/^-measurable subsets Lt Z, U on which x(v) f 6, respectively, and 
observing that 

-C(6) = g(b)B(b) - C{b) 

n {gQ>)-g{l))w(]L,v)Wii 

+ f f fî(0-î(i)Ml,^âO. 

4. Two applications. In the simplest case, w(£, v) = 1, (2) is Jensen's 
inequality 

g ( J x(r)dv\ ̂  ƒ g(*W)<fo 

for the general convex function g(x) =G(x) = G(x, v) *= f% g(£)di; [3, 
§13.34, §18.43]. A particular instance is mentioned in [2, §3]. 

Again, if we take h>0 and set w(^ v) =Ja~1, s real, we find that b 
is the "mean of order s" of x{v) : 

Af« = <( I x*(v)dn 1 , 5 ^ 0 ; exp I log#(z>)d/*, s *= 0> , 

and (2) yields the classical inequality 

Af, £ Mt ÎOÏ s < t 

if one takes g(£) =€«-• [ l ] , [2]. 
These are trivial examples of the "separable" case w(£, P) =w(i;)f(v). 

Nonseparable cases arise naturally in physical problems, as indicated 
below. 

S. A "minimax" principle. Let y(v) be a second function such as 
x(v), and suppose that 

(3) f f" w&v)d&p = 0. 
J I J x(v) 

This is equivalent to the assertion that y(p) and x(v) have the same 
mean b relative to w(%, v), and it follows at once from the Theorem 
(applied to y(v)) that 
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(4) 
n l/W /» /• b /• /» b 

^ f f «(Öwtt, ")<**/». 

If we regard x(z>) as initial temperature distribution on an interval 
/ , of mass m{v) per unit length (dfi==m(p)dp)1 and specific heat wfê, v), 
then (3) singles out the energy conserving distributions y{v), and (4) 
(with g(£) = •—1/£) shows that, among these, the entropy change is 
greatest for the uniform mean temperature y(v)^b. 
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