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For four or five years it had been felt that C2n, 2n + l-degree poly-
nominal spline interpolation of a sufficiently smooth function at 
equally spaced joints (h apart) yielded 0(h2n+2~~l) accuracy in approxi­
mating its Zth derivative. This was recently shown to be true for 
periodic boundary conditions on the spline, s, which interpolates 
f£C2n+2(~ oo, oo), ƒ periodic with period 1 ([l, p. 151]; [2, Theorem 
4] as improved by [3, last paragraph]). It is shown here that the 
errors then are the same (up to a higher order term) as the errors 
associated with local two-point 2w + l-degree polynomial interpola­
tion, H, of ƒ and its first n odd derivatives at the joints (Theorem 1). 
The first term in the asymptotic expansion of ||/(l)—5(Z)||oo is also de­
rived; it is quite local in character. Theorem 2 states that the same 
results hold for the spline interpolating ƒ £ C2w+2 [0, 1 ] which matches 
ƒ and its first n odd derivatives at 0 and 1 as well. 

Complete proofs and further references are given in [3]. The some­
what less satisfactory situation for another boundary condition (first 
n even derivatives) is also discussed there together with results for 
other norms and for rougher functions, ƒ. The emphasis in [3] is on 
strict, rather than asymptotic, bounds. 

The foundations of the proof arose from consideration of some 
cubic spline interpolations at arbitrarily spaced joints. Here the 
techniques yielded some error bounds better than any yet published. 
They showed further that for/£C4[0, l],f—s is locally bounded by 
0(hih2

M), where hi is the local mesh size and hu is the maximum mesh 
size [3]. 

The typical proof of 0(h2n+2~~l) errors determines first a bound on a 
high-order derivative of (ƒ—s)(x); then obtains rough bounds on 
lower-order derivatives by observing that they all have zeroes reason­
ably nearby. The technique used here, however, is to write ƒ—s as 
ƒ—H plus the piecewise polynomial H--s. (fil)—H^l))(x) is computed 
by classical Greene functions arguments. The main lemmas then 
bound HW-sW by 0(h2n+2~la)(f(2n+2\ h)). One thus concludes (with 
the notation h=l/N, g%^g(ih) for any function g, 
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llglU.^maxiifc.^i^lgCx)!, ||g|UsmaxIOii] \g(x)\, 

ù)(g, ^ S S U p l a ^ l i * \g(x)-g(y)\). 

THEOREM 1. Suppose f is periodic of period 1;/£C2n+2(—<*>, oo). 
Suppose N>2n+l^3. Let s£C2n(~- <*>, <*>) be the 2n+l-degree poly­
nomial spline interpolating f at the joints {ih} and satisfying periodic 
boundary conditions at 0 and 1 as well. Let H, a polynomial of degree 
2n+l between the joints, interpolate f i, ffj~l\ 1 ^j^n, O^i^N. Then, 
forOSl^2n+l,forO£i<NiandforxE[ih1 (i+l)h], 

(I) there exists a Green's function, G(s, t), on [0, l ] X [0, l ] such tha. 

ƒ• l QIQ /% — %h \ 
( , *)ƒ<*•+»(<* + th)dt; 

o dsl \ h / 

and 
(II) there are constants Ki,n such that 

(2) \\HW - s™\\„ ^ h*»+2-lKltnü>(Pn+2), h). 
Thus, if f is a polynomial of degree 2n+2, H^s. 

THEOREM2. Suppose,instead,thatfEC2n+2[0,l]andthatsEC2n[0,l] 
is the 2n + l-degree spline interpolating ƒ at the joints [ih] while 
matching the first n odd derivatives of f at 0 and 1 as well. Then the rest 
of Theorem 1 holds unaltered. 

COROLLARY 1. For odd I < 2n + 1, 

max<|/< — Si I = 0[h <a(f , h)\. 

The same result holds half-way between the joints for odd l^2n+l. 

( ƒ—s)(2k) is similarly small at the images (in each interval [ih, (i+l)h]) 
of the two zeroes of the Bernoulli polynomial B2n+2-2k(x); that is, 
roughly at (i+1/4)/* and (i+3/4)h [9]. 

COROLLARY 2. For h small enough ; and for odd (even) l,0<l^2n+l; 
j(i)—s(D vanishes at least once (twice) in all intervals (ih, (i + l)h) which 
are bounded away from the zeroes of f(2n+2). 

COROLLARY 3. Constants Ck and Dk may be computed such that 

\\f - s\\»,i = ^ + 2 [ | |^ + 2 >|U,»C n + 0(o>(/<2»+2>, A))]; 

and,for l^l^2n + l, 

\\f(l) ~ S(ioo,i- = A2w+2-Z[||/(2w+2)|U,^2n+2^ + 0(0>(P«+2\h))]. 

Indeed, 

Ck = 2 | B2k+2\ (1 - l/22*+2)/(2£ + 2)1 < 2D2k+2, 
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while 

(\ Bk\ /k\, h even ) 

where Bk (Bk(x)) is the kth Bernoulli number {polynomial) [8], [9], 
Appendix. 

An outline of the proof now follows. 
Existence and uniqueness of 5 in Theorem 1 is shown in [ l ] (this 

also follows from the comment after Lemma 5). As for H: [4] and [5] 
discuss two-point polynomial interpolation of a function and some of 
its derivatives. Listed there are those sets of ra + 1 function and de­
rivative values (some at each end) which may be assumed uniquely 
by a polynomial of degree m. Matching ƒ and its first n odd deriva­
tives at two points by a polynomial of degree 2n + l is one of these 
"Polya conditions." Thus H exists and is unique. Existence of the 
spline in Theorem 2 now follows. For let P , of degree 2n + l, interpo­
l a t e / a n d its first n odd derivatives at the ends. Set ƒ*=ƒ—P, reflect 
it evenly in 0, and extend it by periodicity of period 2. Interpolate it 
at the joints in [ — 1, l ] by a unique periodic spline, s*; and set 
5==s*-fP. (Since/* may only be in C2w( — 00, 00), Theorem 2 is not a 
corollary of Theorem 1.) 

Let us turn now to the first part of the error, f—H. The existence 
and uniqueness of the "Polya interpolation" above implies the exis­
tence of the Green's function for the boundary-value problem 
(BV): y2n+2) = g i n (o, 1), y and its first n odd derivatives vanishing 
a t 0 and 1. Using this Green's function, G(s, t), one derives an integral 
representation for /—Ü (from which (1) follows): 

LEMMA 1. Suppose f GC2n+2[0, h]. LetH, of degree 2n+l, interpolate 
ƒ and its first n odd derivatives at 0 and h. Then, for 0 ̂  / ̂  2 n + 1 , 

(3) fw(x) - H(,)(*) = ^2n+2~* f (—> t)pn+2)(ht)dt. 
J 0 dsl \ h / 

Let Qzn+iis) be the 2w+2-degree polynomial solving the boundary-
value problem (BV) with g = l. Then, for y(E [0, h], 

/l), v - C D , v 2n+2-l ƒ (2«+2) (!) 
f (x) ~ B (x) = h <f (y)Q2n+2(x/h) 

<4) + / . ' ^ ( T " ) 1 / 0 * + 0 « - / < ! W ! W -
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From the properties of the Bernoulli polynomials and numbers, Bk(x) 
and Bk, one sees 

Ö*H-«(*) EE (B2n+2(x) - B2n+2)/(2n + 2)!; 
QZ\2(x) S B2n+2^(x)/(2n + 2-1)1 

(2), (4), and the properties of the Q2I+2 now prove Corollaries 1 and 2. 
But (4) also implies that 

(5) u r - B
w\\m - *w0l/™lUle£j.+o(w(/2"+ 2 ) , *»], 

thus proving Corollary 3. Results like (3), (4), and (5) hold for all 
Polya's boundary conditions [4], [5]. 

The remainder of this note concerns the second part of the error, 
the 2w+l-degree piecewise-polynomial H—s. It vanishes at the joints 
{ih}. Bounds on its odd derivatives at the joints are found below, and 
the following result will be needed : 

LEMMA 2. If bounds, A2k-.\/h
2k~l, on the first n odd derivatives {at 0 

and h) of a 2n + l-degree polynomial, P, are available; and if P(0) 
= P(A) =0; then Bi exist such /Aa^||P(ï)||80,oâ-B|/AI,0^/^2n + l. These 
B\ may be calculated by setting h — l and considering only polynomials 
which assume the odd derivative bounds at 0 and 1. 

For each seminorm ||P(0||oo,o assumes its maximum (over the com­
pact parallelepiped defined by the specified bounds) at a vertex. 
(Again, the same sort of result holds for Polya's general end condi­
tions [4] and [5].) 

We now turn to estimates of the odd derivatives of H—s at the 
joints. 

Many relations hold between the values of a spline and its deriva­
tives at the joints. The following generalizes [ô] : 

LEMMA 3. For any spline s, of degree w ^ 2 and in C™"1 [0, 1 ] ; and for 
each v, O^v^N+1—m; and for each I, l^Ll^m — 1; there is a linear 
relation between the m quantities, Sj+V, and the m quantities, s$.„ O ^ j ^ 
m — 1. This relation is given by 

y=«o y=»o 

The coefficients may be written as 
1 

af" - (-1)' t (-l)f) (WO" +1-0, 

&r-e.H.iO"+i) 
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where 

( * - l ) l < _ 0 W 

The proof is a straight-forward generalization of the proof of the 
result in [ó], found in [7, p. 436], and attributed to Schoenberg. For 

m = In + 1, a„~y = (— 1; an+)- , 0w-y = 0n+y > u, 

and 

mlbo = 1. 

One now subtracts hl^j b^m)fj% from both sides of (6), and applies 
Taylor's theorem with integral remainder to show 

LEMMA 4. Let s£C 2 w [0 , l ] be a spline of degree 2n+l interpolating 
/GC 2 n + 2 [0 , 1] at the joints x^ih. Define, for 0 < / < 2 w + l, and for 
n^i<N—n, 

(7) Ti(xi) s 2J iiM-y (/«+ƒ - **/)• 

77^# //^r£ are numbers Anj such that, for odd l<2n-\-lt 

(8) | Ti(xi) | g ^+2-^n ,za,(/<2-+2>, *). 

PROOF. For al l / , l ^ / < 2 w + l = = m , 

ml(f» - /)\Ti(xi) = Âw+1-' £ I ^(0[/ (w+1)(^ + *0 
y-i J o 

where 

<Vi(0 = fnlbn+j(j - 0 - (fn~l) lanH 0 "" 0 • 

(7) may be written in matrix notation as (2w + l ) ! T*s 9fftF(ƒ<*>— «('>), 
where 3TCF is a finite (iV+1 — In) by (iV+1) segment of the dou­
bly infinite 2w + l-diagonal Toeplitz matrix 3TC= [w<y]: m# 
= (2w+l) ! è^iii^j, | i — j | gw; m^ = 0 otherwise. Consider the ring 
of such 2 m + 1-diagonal symmetric (rather than Hermitian) complex 
matrices 3, all w ^ O . The correspondence between each 3 and the 
function R(z)^ S ? . - . » /o,*s* (set up also by the Fourier transform of 
R(eix)) is an isomorphism of two rings. Each such function may be 
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factored R(z)^totmJJjk-i (l/z+rk+z); hence each such 3 = £o,™3i • • • 
3w, 3* tridiagonal with generic row ( • • • , 0, 1, rk, 1, 0, • • • ). I t has 
been shown a number of times [3] that the rk associated with 9fft are 
greater than 2. The last lemma one requires, then, is 

LEMMAS. Letv=*îiïlFw, 3TCJP = 5I,F32,F • • • 3»,F. Define V^^W, v{h^l) 

= Qk,FVik). Suppose Halloo occurs elsewhere than either end ofvik), 
l^k^n. Then 

iMi-^n('ü-2)iiwiu 
J b - l 

=«(-DIM!.=(2«+D![*r+l)+21 ( - D V ^ J I W U . 

Equality holds for v whose components are alternately ± 1. 
(One may also show that ||9fîl~1||00 = l / J R ( - l ) , given by [3, (7.7)].) 
Turning to prove (2) of Theorem 1, one first considers H—s on 

[ — 1, 2] instead of on [0, l ] . One observes that, for w = / ( 0— s(l\ the 
existence of the interior maxima for v(A?) of Lemma 5 may be verified 
by periodicity. Thus, by (8), \H]f>-$\ (for odd l<2n+l) are uni­
formly bounded by (2n+l)\h^+^lAntlœ(f^n+2\ h)/R(-l). Lemma 2 
now proves (2). 

As for (2) of Theorem 2, one first extends the definition of H—s to 
[ — 1, l ] as follows: subtract the 2w+l-degree Taylor polynomial for 

ƒ about 0 from ƒ, s, and H; and reflect the results evenly in 0. The 
resulting ƒ* is in C2w+2[ — l, l ] . s* is a spline interpolating ƒ*. 
H*—s*=H—s in [0, l ] ; H—s is thereby extended to [ — 1, l ] . Now 
do the same thing at 1. The extended JEf(0 — s ( 0 still satisfies (8) and 
(now) the hypotheses of Lemma 5. (2) follows as above. 

A P P E N D I X 

The first few Dk and Ck of Corollary 3 are: 

D6 = (1 - 4/V30)1/2(3 + V30)/21600, Dn « 3.32 10~9, and 

k 1 2 3 4 5 

Dk 1/2 1/12 V3/216 1/6! above 

AH-* 4/(3-8!) 5.17 10-6 3/10! 1.31 10~7 10/121 

(2fc + 2)!22*+2C* 1 3 17 155 2073 

I t might be noted that corresponding Ck for two-point Her mite 
interpolation (of ƒ and its first k derivatives) are l/(2fe+2)!/22H"2. 
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