ALGEBRAIC LIE ALGEBRAS!
BY GEORGE B. SELIGMAN

It is my objective in this address to survey results analogous to the
third theorem of Lie (and its converse) for linear algebraic groups and
their Lie algebras. In particular, I wish to report some slight progress
on the problem of deciding from its structure whether a given Lie
p-algebra (“restricted Lie algebra”) over an arbitrary field F of prime
characteristic p is realizable as the Lie algebra of a linear algebraic
group defined over F. It is to be hoped that the criteria here presented
for the commutative case will find extensions, at least to the solvable
or nilpotent case.

1. Matrix groups and their Lie algebras. In this section I assume
the base field F to be algebraically closed. I believe that the gains in
explicitness afforded by this assumption are sufficient to offset the
demands of comprehensiveness, which are well satisfied in [8]. As a
linear algebraic group over F, I take here the most primitive notion,
namely that of a subgroup G of a full matrix group GL(%, F) such that
G is the intersection with GL(n, F) of the family of zeros in F»’ of a
set of polynomials. The group G is connected if G is irreducible as an
algebraic subset of GL(#n, F). Denoting by F[X] the polynomial ring
in the n? variables X;; corresponding to the matrix entries and by a
the ideal in F[X] vanishing on G, the algebra 4 (G) of everywhere-
defined rational functions on G is generated over F by the restrictions
to G of the X,; and the reciprocal of the determinant function [1],
[36],and thusmaybeidentified with B/aB, where B = F[X ;;, det(X)~1],
(X) denoting the indeterminate matrix (X,;). Thus G is an affine
algebraic set over F, with affine algebra 4 (G), and the rings of rational
functions defined at points (or at irreducible algebraic subsets) of G
are localizations of 4 (G).

A tangent vector at a point of G (defined by analogy with [7]) is
thus determined by its effect on 4(G), and a right-invariant tangent
vector field T on G is determined by the effect on 4 (G) of the tangent
vector which T assigns at the identity. Now the tangent space at the
identity I can be realized as follows: Let () be an arbitrary » by »
matrix, and consider the unique F-derivation D, of F[X] sending
X into D _saaXyj, the (4, 7)-entry in (a) (X). Suppose that () is such
that D,y maps the ideal a into itself. Then D¢, induces a derivation,
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also written D(,y, of 4(G) into itself, commuting with right transla-
tions by elements of G; moreover, every tangent vector at I is ob-
tained by applying one such D), then evaluating the resulting func-
tion at I [8], [32]. By this means, one identifies the Lie algebra of all
such matrices (&) (with [(@), (8)]=(a)(8) —(8)(a)) and the Lie alge-
bra (under the Poisson bracket) of all right-invariant tangent vector
fields on G. If the characteristic of F is a prime p, then the pth power
()? is in this Lie algebra whenever (o) is, and the resulting derivation
is the pth iterate of D (. The Lie algebra of matrices so defined is the
Lie algebra of G, denoted here by &(G).

In this setting, the question of algebraicity is: Given a Lie algebra
of n by n matrices over F, when is  =%(G) for some algebraic subgroup
G of GL(n, F)? For the case of characteristic zero, a complete answer
to this question has been given by Chevalley [8] (see also [18]). One
defines replicas of a matrix (o) as those matrices (8) whose “infinitesi-
mal tensor invariants” include those of (a); then 2 is algebraic if and
only if for each (o) ER all replicas of (@) are in &, and in this case
L=2(G) for a unique connected algebraic subgroup G of GL(n, F).
More concretely, if (a) is taken in Jordan form, the replicas of (a) are
all linear combinations of the matrices obtained as follows: (1) By re-
placing the diagonal of (@) by zeros—the result here is the “nilpotent
part” of (@) ; (2) By considering the diagonal matrix diag {em, - - -, Otnn }
having the same diagonal as (a)—the “semisimple part” of (a)—and
forming all diagonal matrices diag{ﬂu, e, 6,,,.} such that if m; are
rational integers with » m,x;;=0, one has ) m,8:=0.

Since I want to emphasize the problem of recognition of a Lie
algebra as algebraic in terms of structural characteristics, a few re-
marks seem in order as to some properties which assure that a Lie
algebra & of matrices (over a field of characteristic zero) is algebraic.
For instance, if € is the derived algebra of some Lie algebra,  is alge-
braic; in particular, if 2= [f2] (thus whenever £ is semisimple), € is
algebraic. In this line, we also know that { is algebraic if and only if
its (solvable) radical is algebraic. From the above remarks on replicas
it is clear that any Lie algebra M consisting of nilpotent matrices is
algebraic; in fact, ! =Q(G) where the elements of G may be realized
uniquely as the products of d =dim. N matrix factors (in specified
order) exp(\#:), u; running over a basis for % and \; over the field F.
Thus the underlying variety of G is an affine space. Other subalgebras
€ of matrices which are algebraic include stabilizers of subspaces,
centralizers of sets of matrices, derivation-algebras, and other ex-
amples to be found along with these in [8], which is the reference for
all the above.
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In case F is of prime characteristic p, one still has the notion of
replica; when (a) is taken in Jordan form, the replicas of its nilpotent
part N consist of all p-polynomials > B; N?*, and form a vector space
of dimension % where N#*=0, N**"50 [13], [40]. The replicas of its
semisimple part are just as in characteristic zero [6]. Moreover, both
the semisimple and nilpotent parts of (&) are p-polynomials in (o),
and combinations of their replicas exhaust the replicas of (@) [6],
[8], [14], [33]. Thus the replicas of (a) are just the p-polynomials in
(e), and the condition that £ contain with (@) all its replicas amounts
to requiring that { be closed under the operation of taking pth powers.

Now if & is a simple Lie algebra of matrices, and if 8=2(G) for a
connected algebraic subgroup of GL(#n, F), then it follows, from the
fact that the Lie algebra of a normal subgroup is an ideal in g, that
G has no nontrivial connected normal algebraic subgroups, therefore
is a member of a list which has been determined by Chevalley [11].
The Lie algebras of the groups in this list may be separately deter-
mined, or one may use more unified methods, as in [20], for their
determination. It turns out that the only simple Lie algebras among
them are of the form 2,® F, where 2 is a Chevalley lattice [10] in a
simple Lie algebra ¢ over the complex field, and not even all of these
are simple [16], [30], [38]. On the other hand, there are many simple
Lie algebras over F, not of this form, which may be realized as Lie
algebras of matrices closed under pth powers. Simplest examples are
the Lie algebra of p by p matrices of trace zero, modulo scalar ma-
trices (p>2) and the Lie algebra of derivations of the group ring over
F of an elementary abelian p-group (of order greater than p if p=2
or 3). (For a list apparently complete to date, see [34, Chapter V].)
Thus the replica criterion gives a necessary, but not sufficient, condi-
tion for algebraicity.

Structural conditions sufficient for algebraicity of a Lie algebra are
present under some circumstances, usually when the Lie algebra & is
presented as a subalgebra of the Lie algebra It of some (connected)
algebraic subgroup G of GL(n, F). Some of the more interesting, and
quite typical, of these conditions are the following: (Although this is
often superfluous, the ground field is assumed algebraically closed
and of characteristic 2, 3.)

(A) If G is an algebraic torus (i.e., a connected algebraic group of
diagonal matrices), then every p-subalgebra of &(G) is algebraic, and
is the Lie algebra of a subtorus (not unique) of G[14].

(B) If xER(G) is semisimple, then the centralizer of x in (G) is
algebraic, and is the Lie algebra of the centralizer of x in G[2].

(C) The maximal ideal in 2(G) consisting of nilpotent matrices is
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algebraic, and is the Lie algebra of the unipotent radical (maximal
normal subgroup of unipotent elements) of G [20].

(D) Each Cartan subalgebra of {(G) is algebraic, since it is the
centralizer of a semisimple regular element (see (B)), and the corre-
spondence between (connected) centralizers in G of regular semi-
simple elements of {(G) and Cartan subalgebras of (G) is one-one
[20]. (These subgroups need not be “Cartan subgroups” [9], [11].)

(E) Each maximal toral subalgebra (i.e., commutative subalgebra
of semisimple elements) of £(G) is algebraic, and is the Lie algebra of
a maximal torus of G. If G is reductive (has trivial unipotent radical—
see (C)), the resulting correspondence between maximal tori of G and
maximal toral subalgebras of 2(G) is one-one [20].

(F) Each maximal solvable subalgebra containing a maximal toral
subalgebra of {(G) is algebraic, and is the Lie algebra of a maximal
solvable subgroup of G [41]. The resulting correspondence between
Borel subgroups (maximal solvable connected subgroups) of G and
maximal solvable subalgebras of £(G) containing a maximal toral
subalgebra is one-one [20].

Most of the results cited above are also to be found in [17] (see
especially Exposés XI1I-XIV).

One striking case where one can assert algebraicity of a Lie p-
algebra £ of matrices is that where € is generated by a single matrix
(@), that is, where 2= ((c)) consists of all p-polynomials in (a)—or,
what is the same, of all replicas of (). For by decomposing (a) into
semisimple and nilpotent parts we see by (A) above that the p-algebra
generated by the semisimple part is algebraic. Dieudonné has also
shown, with the aid of his “hyperexponential” group laws, that the
p-algebra generated by the nilpotent part is algebraic, and is the Lie
algebra of a commutative unipotent group commuting elementwise
with a torus whose Lie algebra is generated by the semisimple part.
Thus 8 is the Lie algebra of a commutative algebraic group. The
hyperexponential group involved is isomorphic to an additive Witt
group, and has thereby an underlying variety which is an affine space
[14], [15]. The choice of GEGL(n, F) with 2=2(G) is by no means
unique. Moreover, it is now clear that the condition that {(a)) be
algebraic for every () in the p-algebra € brings us no closer than be-
fore to the algebraicity of 8, whereas a corresponding condition in
characteristic zero is sufficient.

2. The problem for abstract Lie algebras. When one examines the
theorems of Lie in their original form, one observes that the analogy
which served as the basis for §1 is not the most accurate one. Namely,
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the classical results produced a (local) Lie group whose Lie algebra
has the same structural constants as a given Lie algebra—in other
words, which is isomorphic to the given Lie algebra. Thus we should
perhaps reformulate our question as follows: Given an absiract Lie
algebra 8, when is there a linear algebraic group G such that & and (G)
are isomorphic?

Asin §1, we begin with characteristic zero. The question is whether
{ has a faithful representation to which the considerations of §1
apply. It is not hard to see that there are still exceptions to algebraic-
ity; for if ® is algebraic in our sense, then there is an adjoint group,
which is an algebraic group of automorphisms of  having as Lie
algebra the Lie algebra ad { of inner derivations of € [8]. However,
it is not true in general that ad { is closed under taking replicas. For
example, consider the solvable Lie algebra ¢ with basise,, - « - , es and
lexes] =es, [eses] = —es, [erea] =estes, [e2ed] = —es, [e165] =65, [ezes]
= —e3—e5, all other products being either determined by anticommu-
tativity or equal to zero. Then if y &R is to be such that ad y is the
semisimple part of ad e;, we must have [ye;] =0, i=1, 2 and [ye;] =¢;,
j=3, 4, 5; one verifies at once that { contains no such y, hence that
is not algebraic in our extended sense. This Lie algebra § may be
realized as all matrices of the form

a a v 6
0 aa 0 ¢
0 0 8 B
0 0 0 g

If we let I be the subalgebra for which a =, we obtain a nilpotent
Lie algebra of matrices which evidently does not contain the semi-
simple part of the matrix with @ =8=1, y=8§=¢€=0. Thus there is no
algebraic subgroup G of GL(4, F) with I =2(G). On the other hand,
one knows by Harish-Chandra’s proof of Ado’s theorem (cf. [23,
Chapter VI]; also [19], for a somewhat stronger result) that I has a
faithful representation by nilpotent matrices so that I is algebraic
in the sense of this section by a result cited in §1. More generally, any
Lie algebra whose (solvable) radical is nilpotent is algebraic.

Let us now turn to the case of prime characteristic p. Here it is
clear that the only Lie algebras that have a chance to be algebraic
are those in which a p-power operation can be introduced which
agrees with the pth power for matrices in some faithful representa-
tion. Since an abstract setting for Lie algebras with a p-power opera-
tion has been given by Jacobson ([21], [23, Chapter V]), it seems
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appropriate to formulate our problem in this setting, that of “re-
stricted Lie algebras,” or “Lie p-algebras.” Thus the problem reads:
Given a Lie p-algebra &, when is there a linear algebraic group G such
that & is isomorphic, as Lie p-algebra, to R(G)?

To get a hint of the richness of this problem, consider the case
where { is of dimension one, with basis x. As ordinary Lie algebra, 2 is
the Lie algebra of any one-dimensional group G; however, if we take
into account the p-power, we have x?=Ax for some N&EF. With F
algebraically closed, R is the Lie algebra of an additive group G, resp.
of a multiplicative group G, according as A is or is not zero. If we
consider general fields F, then € is the Lie p-algebra of a linear alge-
braic group over F if and only if A=p® /2 for some pEF. (These
considerations will be developed in what follows.)

3. Lie algebras of affine groups. It seems most efficient to present
the notion of linear algebraic group over a general field F and of its
Lie algebra in a context which is really that of affine schemes over F.
For motivation, let us reconsider some notions of §1, where F is as-
sumed algebraically closed, G is an algebraic subgroup of GL(n, F)
and A4 (G) is the F-algebra of rational functions defined everywhere
on G. In this setting, one has a product group G XG, which may be
regarded in a rather evident way as an algebraic subgroup of
GL(2n, F) consisting of diagonal blocks from G, and one may identify
A(GXG) with 4(G) ® rA(G) [8]. Corresponding to the map ((), (8))
—(a)(B) of GXG into G, we have a homomorphism of F-algebras
with unit A: 4(G)—A4(G) @ A(G) defined by (fA)((ar), (B)) =f(()(B))
for fEA(G), ((@), (B)) EGXG. Associativity of G is reflected in co-
associativity of A:AA®1)=A(1®A), as maps of 4(G) into 4(G)
®A4(G)®A4(G). Likewise the mapping sending an element of G to its
inverse yields an automorphism 5 of 4(G): (fn) ((@)) =f((e)~1), and
corresponding to the identity I of G we have a homomorphism € of
F-algebras from A(G) onto FC A(G) sending f onto fe=f(I). The
group properties of G are faithfully reflected in the commutativity
of various diagrams involving these maps, as displayed in [5] or [26].
Conversely, one can recover G (up to isomorphism) from A4(G) by
taking the affine algebraic set of all F-homomorphisms of 4(G) into
F and introducing product, inverse and identity by means of A, 17, ¢,
respectively.

Consider therefore a commutative F-algebra 4 with unit, finitely
generated over the (now arbitrary) field F, together with homomor-
phisms of F-algebras A: A—AQ®yrd; n: A—A; e: A—>FC A, making
commutative the list of diagrams indicated above. Such an object will
be called an affine group over F.
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To define its Lie algebra, let us again consider the model of §1.
There the elements of 2(G) correspond to derivations D of 4(G) as
F-algebra, commuting with right translations by elements of G, or to
F-derivations of 4 =A4(G) making the following diagram commuta-
tive:

A
A—A4Q 4
* DlA |l D®1
4A—-4Q 4

Exactly such derivations of 4, now defined abstractly as in the
preceding paragraph, constitute a Lie algebra {(4) over F (with
[DE]=DE —ED), closed under pth iterates if F has prime character-
istic p. We call R(A4) the Lie algebra of the affine group A. Considering
only Lie p-algebras, the original question now becomes: Givern a Lie
p-algebra { over F, when is there an affine group A over F such that R and
R(A) are isomorphic Lie p-algebras?

In view of earlier remarks, it may seem at first rather surprising
that the answer to this last question is: ALWAYS. The ideas for the
construction of 4 given below seem to have originated independently
with Manin [25] and Cartier [5]. Namely, let U be the Jacobson
“y-algebra” ([23, Chapter V]) of €, an associative algebra with unit
over F of dimension p*, n=dim 2. Denote by A* the product in 11;
thus A*: U® pll—>1 is F-linear, as is €*, the isomorphism of F onto
F1CU. There is also an antiautomorphism n* of 11 of period two,
sending elements of {(CU) into their negatives; a homomorphism
m*: U-UQRU, sending each xEL onto x*®1+1®x; and a homomor-
phism p*: U—-F1C, sending each x &R to zero. Now let 4 =U*, the
dual space of U over F, and denote the duals of the starred mappings
above by removing stars. Then u and 7 define on 4 a structure of p»-
dimensional F-algebra with unit, which is easily seen to be associative
and commutative. The maps 4, 9, € in turn give 4 the structure of
affine group over F.

Now let DER(A), and let D*: 1—U be the dual of D. From dual-
izing the diagram (*), we see that D* commutes with all right multi-
plications in U, hence is left multiplication by some # €1l. Then dual-
izing the relation 7D = (D ®1+41Q® D), which expresses the fact that
D is a derivation, shows that ur*=2#®14+1Qu (i.e., that u is a primi-
tive element of U). But the elements % of U satisfying this last condi-
tion are exactly those of € [23, Chapter V], [28]. Now it is an easy
matter to verify the isomorphism of 2(4) with &,
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The reason for the disparity with earlier remarks lies in the general-
ity admitted for 4; namely, the kernel of € above constitutes a nil-
potent ideal of codimension one. From this it is clear that the only
F-homomorphism of 4 into a field extension of F is the map ¢, analo-
gous to the identity of the group G when 4 =4 (G). (In the language
of schemes, the only “geometric point” over F of Spec 4 is €.) To re-
turn to the geometric case, we require that 4 be (the affine ring of a
variety) defined over F in the sense of Weil, that is, that 4 be an inte-
gral domain whose field of quotients is a regular extension of F, or
that 4 ® pK be an integral domain for every field extension K of F.
We impose this condition on A in further considerations.

A few comments before passing on are in order. The affine group 4
of the construction above is a special case of an infinitesimal formal
group, and a characterization of a class of infinitesimal formal groups
corresponding exactly to the Lie p-algebras (not necessarily finite-
dimensional) over F, in a manner extending that discussed here, has
been given by Cartier [5] (see also [17, Exposés VII A, B]). Such
groups actually arise in the context of linear algebraic groups, when
one wishes to have something which plays the part of the kernel of a
purely inseparable isogeny (cf. [37]).

4. Lie algebras of commutative affine groups. The only cases where
something like a systematic study of our question has been made are
that of the simple Lie p-algebras, where the classification of Chevalley
[11] in the algebraically closed case and that of Tits [39] in general
give considerable information, and that of commutative Lie p-alge-
bras. In the latter case, one is dealing simply with a vector space &
over F, of characteristic » >0, and with a given p-semilinear mapping
x—x? of § into . It is this case which occupies the remainder of my
talk, and indeed the formally more restricted question as to whether
¢ can occur as the Lie algebra of a commutative affine group defined
over F.

Let €2 denote the subspace of € generated by the image of € under
the kth iterate of the mapping x—x?. Then these subspaces evidently
form a descending chain, so stabilize at some point in a subalgebra &
with £» =g, and with every element of # =8/ being nilpotent with
respect to the (induced) p-power operation. One says that < is toral
and N is #il, and has the exact sequence 0—T—L—-N—0. If the field
F is perfect, & is actually the image of & under x—x?, and Fitting’s
lemma applies to split the exact sequence, giving L=TON [4,
Exercise §1, #23]. Otherwise the sequence need not split. Although
some Lie p-algebras of nonsplit type do occur as Lie algebras of






