PLANARITY IN ALGEBRAIC SYSTEMS

BY MICHAEL ANSHEL AND JAMES R. CLAY¹

Communicated by R. S. Pierce, March 8, 1968

Planarity was introduced into algebra by Marshall Hall in his wellknown coordinatization of a projective plane by a planar ternary ring [4]. In [6], J. L. Zemmer defines a near-field to be planar when the equation ax = bx + c has a unique solution for $a \neq b$. In our investigation of planarity, we discovered that if $(N, +, \cdot)$ is a near-ring satisfying the above equational property, then $(N, +, \cdot)$ is a near-field. (This was conjectured by both D. R. Hughes and J. L. Zemmer in private communications.) We present some extensions of this result together with geometric interpretations of "planar" near-rings.

Definitions and notations. By a left distributive system is meant a triple $(N, +, \cdot)$ such that multiplication \cdot is left distributive over addition +. Elements $a, b \in N$ are called left equivalent multipliers, denoted by $a \equiv_m b$ iff ax = bx for all $x \in N$. The relation \equiv_m is discrete when $a \equiv_m b$ implies a = b. A left distributive system is said to possess the planar property if the equation ax = bx + c has a unique solution for $a \not\equiv_m b$.

DEFINITION. A left distributive system $(N, +, \cdot)$ with planar property is a *planar system* if

- (1) in (N, +) the right cancellation law is valid;
- (2) in (N, +) there is an identity 0;
- (3) (N, \cdot) is a semi-group;

(4) there are at least three points in N, no two of which are left equivalent multipliers.

A planar system is *integral* if 0 is the only left zero divisor.

Main results. Let $(N, +, \cdot)$ be an integral planar system. Then $0 \cdot x = x \cdot 0 = 0$ for all $x \in N$. Let 1_a be the solution to the equation $a \cdot x = a$, $a \neq 0$, and $B_a = \{x \in N^* | x \cdot 1_a = x\}$, where N^* denotes the nonzero elements of N. We have the following

THEOREM 1. Let $(N, +, \cdot)$ be an integral planar system. Then (i) each (B_a, \cdot) is a group with identity 1_a ; (ii) the family $\{B_a\}_{a \in N^*}$ is pairwise disjoint; (iii) $N^* = \bigcup_{a \in N^*} B_a$;

¹ The second author received support from NSF contract #GP-2141.

(iv) $N^*B_a = B_a$ for each $a \in N^*$;

(v) if a, $c \in N^*$, then $\phi: B_a \to B_c$ defined by $\phi(x) = x \mathbf{1}_c$ is an isomorphism;

(vi) each 1_a is a left identity for $(N, +, \cdot)$.

COROLLARY. Let $(N, +, \cdot)$ be a near-ring that is an integral planar system with \equiv_m discrete. Then $(N, +, \cdot)$ is a planar near-field.

PROOF. If a, $b \in N^*$, then $1_a \equiv_m 1_b$.

In the sequel a near-ring that is an integral planar system will be called an *integral planar near-ring*.

THEOREM 2. Suppose $(N, +, \cdot)$ is an integral planar near-ring and each $\overline{B}_a = \{0\} \cup B_a$ is an additive normal subgroup. Also suppose that no $\overline{B}_a = N$ but any two \overline{B}_a , \overline{B}_c generate N under +. Then

(i) each $(\overline{B}_a, +, \cdot)$ is a near-field;

(ii) $(\overline{B}_a, +, \cdot)$ is isomorphic to $(\overline{B}_c, +, \cdot)$ if $(x+y)1_c = x1_c + y1_c$ for all $x, y \in B_a$;

(iii) (N, +) is abelian and is isomorphic to the direct sum $\overline{B}_a \oplus \overline{B}_c$ as groups;

(iv) the points of N are the points of an affine plane A with the cosets of the \overline{B}_a as lines;

(v) the plane A can be coordinatized by a skew field.

PROOF. The group (N, +) is a $\Phi(I, IV)$ group [5]. A $\Phi(I, IV)$ group is abelian since $x \rightarrow x + g$ induces a translation on A and so Axiom 4a is satisfied (p. 58 of [1]). Axiom 4bP (p. 63 of [1]) holds at $0 \in N$ where $x \rightarrow tx$ are the required dilatations.

THEOREM 3. Suppose $(N, +, \cdot)$ is a finite integral planar near-ring and each $\overline{B}_a = \{0\} \cup B_a$ is an additive subgroup. Also suppose that no $\overline{B}_a = N$ but any two \overline{B}_a , \overline{B}_c generate N under +. Then

(i) (N, +) is abelian;

(ii) the affine plane A determined by N can be coordinatized by a field $(F, +, \cdot)$;

(iii) each $(\overline{B}_a, +, \cdot)$ is a field;

(iv) each $B_a = \{(x, mx) | x \in F\}$ for some $m \in F$, or $B_a = \{(0, x) | x \in F\}$.

PROOF. Each $(\overline{B}_a, +, \cdot)$ is a near-field, hence (N, +) is a *p*-group. Now $(\overline{B}_a, +)$ is contained in the center of (N, +) for some $a \in N^*$, hence (N, +) is abelian since $N = \overline{B}_a + \overline{B}_c$. A finite skew field is a field, and each $(\overline{B}_a, +, \cdot)$ is isomorphic to the coordinization skew field.

Examples. 1. Let $(F, +, \cdot)$ be a field. Define $+_{\lambda} (\lambda \neq 0)$ by $a +_{\lambda} b = b$ if $a = 0, a +_{\lambda} b = a + (\lambda b)$ when $a \neq 0$. Then $(F, +_{\lambda}, \cdot)$ is a nontrivial

integral planar system where \equiv_m is discrete and $+_{\lambda}$ is not necessarily associative.

2. Let $(R \times R, +)$ be additive group of complex numbers. Define \cdot by $(a, b) \cdot (c, d) = ||(a, b)||(c, d)$ where $|| \cdot ||$ is any norm on $R \times R$. Then $(R \times R, +, \cdot)$ is an integral planar near-ring.

3. Let $(R \times R, +)$ be as in 2. Define \cdot by $(a, b) \cdot (c, d) = (a, b)^{(c, d)}$ where $(a, b)^{(a, b)} = 0$ if a = b = 0; otherwise $(a, b)^{(c, d)}$ is the first nonzero coordinate. Then $(R \times R, +, \cdot)$ is an integral planar near-ring.

4. Let $(R \times R, +)$ be as in 2. Define * by $(a, b)*(c, d) = (a, b)/|a, b| \cdot (c, d)$ where $|(a, b)| = (a^2+b^2)^{1/2} \neq 0$ and \cdot denotes the usual multiplication of complex numbers. If (a, b) = (0, 0), then (a, b)*(c, d) = (0, 0). Then $(R \times R, +, \cdot)$ is an integral planar near-ring.

5. Table 1 defines a multiplication \cdot on the cyclic group $(Z_5, +)$ such that $(Z_5, +, \cdot)$ is an integral planar near-ring. Note that $B_1 = \{1, 4\}, B_2 = \{2, 3\}$. Define $\overline{B}_i = B_i \cup \{0\}$ and $B_{ij} = \overline{B}_i + j$, $i = 1, 2; j \in Z_5$. If

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	4	3	2	1
3	0	1	2	3	4
4	0	4	3	2	1
TABLE 1					

we let $I = Z_5$, then the B_{ij} are circles of an inverse plane [3]. This example was obtained using a digital computer. (See [2].)

It is of interest to graph the left identities and the B_a in each of the Examples 2, 3, and 4.

BIBLIOGRAPHY

1. E. Artin, Geometric algebra, Interscience, New York, 1957.

2. J. R. Clay, The near-rings on groups of low order, Math. Z. 104 (1968), 364-371.

3. P. Dembowski and D. R. Hughes, On inversive planes, J. London Math. Soc. 40 (1965), 171-182.

4. M. Hall, Jr., Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.

5. V. P. Zarovnyi, Interpretation of the plane axioms of affine geometry in an abstract group, Ukrain. Mat. Ž. 10 (1958), 351-364.

6. J. L. Zemmer, Near-fields, planar and nonplanar, The Math Student 31 (1964), 145-150.

UNIVERSITY OF ARIZONA

748