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The purpose of this note is to show that by very simple arguments 
one can obtain an analogue of E. M. Stein's theorem [ l] for non-
compact er-compact groups. Together with Theorem 1 of Stein we get 
the following 

THEOREM I. Let G be a locally compact ^compact group. Tm a se­
quence of bounded linear operators of LP(G) into itself 1 g £ â 2 such that 

(a) Tm(fg)(x)-Tm(f)(gx) where f(gx)**fg(x). 
(b) The support of Tm(f) is contained in a compact set whenever ƒ 

has compact support. 
Define M(f)(x) =supm\ Tm(f)(x)\. Then the following conditions 

are equivalent: 
1°. V/Gi p (G) Af ( ƒ ) ( * ) < * a.e. and \ [x: M(f)(x)>\}\ < oo for 

some X (depending onf). 
2°, | \x; M(f)(x)>\}\ èC(\\f\\P/\)» for X è | | / | | , where C is inde­

pendent off. 

Here \E\ denotes the left Haar measure of the set E. 
Moreover, if G is not compact, the restriction p ̂  2 is not necessary. 
I t is evident that Theorem I reduces to Theorem 1 in [ l ] when G 

is compact. We are going to consider the case G noncompact. As will 
be seen from an example the restriction | | / | |P^X is necessary. How­
ever, if we replace condition (a) by condition 3° of Theorem II below 
we get a global weak type estimate. 

DEFINITION. A is an affine map on G if it can be represented as a 
composition of left and right translations with continuous auto­
morphisms of G. 

From the uniqueness of left Haar measure 

AA I fA(%)dx** I f(x)dx where f A. **> f(Ax) 
J o J G 

for some constant AA > 0. 

THEOREM II . Let M be a sublinear operator1 defined on Lp(G), 
lM is sublinear if and only if |M(/+g)(a?)| £|M(f)(x)\ +|jlf(g)(»)| and 

|M(X/)(*)IH \\\M(f)(x)\. 
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1 tkp ^ °°, into measurable functions such that 
1°. VfGL*, M(J) (*) < °° a- e. and \ {x : M(f) (x) >X} | < oo for some X. 
2°. Iffk—rf in norm in Lp then there exists a subsequence f ik such that 

M(f)(x) £ lim inf M(ƒ,*)(*) a.e. 

3°. There exists an affine map A with AA^I such that 

M(fA)(x) « A1M(J)(AX) for some a E R 

then 

|{*:jif(/X*)>x}| s c(|l/II«A>«, 
where 1/q ~l/p +ce. 

REMARK. The condition AA 9*1 implies already that G cannot be 
compact. We will prove later that condition 2° is verified for M in 
Theorem I. 

The proof is based on the following lemma of Edwards and 
Hewitt [2]. 

LEMMA (EDWARDS-HEWITT [2, THEOREM (1, 5)]). Let M satisfy 
conditions 1° and 2° of Theorem II. Then 

V ƒ G Lp> V X > 0, there exists C(X) such that 

I {*:*ƒ(ƒ)(*) >c ( \ ) | | /m <;x. 

PROOF. Condition 1° is clearly equivalent to the following: 
1°'. V/Gi>, | {x:M(f)(x) > X}|_>of X->oo. 
Let £» ,x={ /Gi p :\{x : M(f)(x)>n}\ g\}, then 1°' implies 

\JZ_Q Enf\ = Lp. Moreover, En,\ are closed (this follows immediately 
form 2°). Applying Baire's Category Theorem there exists Enx,\ con­
taining a ball S\ of radius r\ centered at ƒ. Clearly every element of 
the ball in Lp of radius r\ centered at 0 is a difference of 2 functions in 
£nX.x so that (1.1) holds for some constant C\. 

PROOF OF THEOREM II. Let 

C(X) « inf{Cx à 0: Vf G 2>, | {x : Jf(/)(*) > Cx | | /U | £ x}, 

then 

| {x:M(fA)(x)>C(X)\\fA\\P}\ £X 

but H/^IU^AI^II/IU and condition 3° imply 

file:///JZ_q
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A-*| {x :M(f)(x) > C(X)A-c^i/rt||/||,} | 

- | {x:M(f)(Ax) > C(X)A-<«+HI/lU I 

- \{x:M(fA)(x)>C(\)\\M\p}\ £X 

thus 

C(XA) û CQùA-W'K 

Clearly 3° holds for A replaced by Ak (k integer) and A by A* so that 

C(XA*) ^ C(X)(A*)-<*w*>. 

Since C(X) is decreasing we get C(X) ̂  OrW\ Q.E.D. 
PROOF OF THEOREM I. Let us prove first that condition 2° of The­

orem II is verified. Let ƒ*.—>ƒ in Lp; since Tn is continuous in measure, 
we can extract a subsequence such that Tn(fki)(x)-*Tn(f)(x) a.e.; by 
a diagonalization process we can choose the subsequence independent 
of n. Assume now that 

M(f){x)>\\ there exists n(x) such that Tn(X)(J)(x)>\, so there 
exists k(x) such that 

k > k(x) =* Tn(x)(fk)(x) > X, 

which implies 

M(fk)(x) > X, 

hence lim inf*-*, M(J)(x) èX. 
Using the lemma we get 

I {*:Jf(ƒ)(*) >C(\)||/ | | ,}1 gX. 

Our purpose is to compute C(X). Define 

MN{f){x) - sup | r.(y)(«) | 

then 

I {x : Af»C/)(*) > C7(X)|l/||,} | £ | {* : ilf (ƒ)(*) > C(X)||/||,} | Û A 

and 

| {*:!**(ƒ)(*) > COOll/ll,} | -> | {*: If(/)(*) > C(X)||/||,} | , 

We now need the following simple lemma. 

LEMMA. Let G be a locally compact noncompact group. Let K be a 
compact subset, then there exists hÇ^G such that hKC\K*=0. 
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PROOF. Let L be the union of all hK for which hKr\K?*0. Clearly 
LQKK^K, which is compact. If the lemma is false then L = G 
compact, contrary to our assumption. 

Let fÇzL* have compact support. By the lemma, there exists 
hN&G such that supp /Hsupp fhN*=*0 and supp TVHsupp Tm(f)hN 

= 0 for all tn^N. Thus 

MN(f+fhN) = MN(f)+MN(f)hN, and Supp MN{f)C\ supp MN{hN)^0* 

\ 2 | {x:MN(f + fhN)(x) > Wf + fnN\\pC(\)} | 
- | {x :MN(f)(x) + MN{f){hNx) > 2V»\\f\\pC(\)} | 

^2\{x:MN(f)(x)>2^C(\)\\f\\p}\. 

Repeating the argument for k translates, we get 

| {x : M(j){x) > kV»C(\)\\f\\P) | S A/A, k > 0 integer 

for all ƒ with compact support. Using 2° of Theorem II, we extend 
the inequality for all ƒ £ i > and the theorem follows. 

REMARK. We proved Theorem I under the assumption Tm are 
continuous in measure. 

EXAMPLE. Let 

Then 

ƒ(* - y) 7 , f /(* - ^ 
ii/Ui y a ^ iy»>i y I 

dty. 

The first integral is a convolution with an integrable function so it 
belongs to L*. The second is a convolution with an Lpi function for 
px>n/a so it belongs to L\ l/q1 = l/p + l/pi — l. Thus condition 1° 
of Theorem II is verified. Moreover, it is clear that 

Rn | x _ y |a 
-- \ -n+a M(/)(A*) 

so that condition 3° of Theorem II is verified (the affine map is a 
dilation). By Theorem I, M maps Lp into weak Lq continuously for 
l/q = l/p+a/n-l. 

We can easily improve the result to get a theorem of Stein and 
Weiss [3]. Consider 

1 r f(y) 
I #1* J R» \x — y\P\y\a 
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where ƒ€!>, 0<P<n,a<n(l-l/p),a+y£0, l/p-l+(a+P+y)/n 
>0. Then 

1 r /(MO 
I # p J R» I * — y|*| y\<* 

So that ilf will map L* into weak Z«, l/q = l/p+(a+p+y)/n-l if 
we can prove 1° Theorem II. But 

M(Mx) = -p-r- I -j |fl | . <*? 
1*1* •'iirKi-i/» | * — y r l y|* 
, i r /(y) . 

•*" i—î— I 1 n—r~ ^ 

Now if \y\ < f | # | then |# — y| >§ |# | so that 

Applying Holder's inequality to the first integral for a<n(l — l/p)t 

we get 

¥(/)W * i^^^a-x,,) + y~p;JJT^Wdy' 
It is clear, using the previous example and conditions on a, ft, 7, 

that 1° is verified. 
REMARK. TO see that the restriction ||/||p:gX in Theorem I is essen­

tial let us consider 

J 1 l/n<\y\<n \ y 

ƒ(* - y) . 
dy. « 

Then Tn maps Lp continuously into itself, M(J), however, will map 
Lp into weak Z,«, 1/q — l/p+a/n — 1, i.e. g>/>, and by the proof of 
Theorem II, will be identically 0 if the inequality of Theorem I were 
to hold without the restriction ||/||pgX. 
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