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Let X and Y be Banach spaces, G an open subset of X. If we denote 
the closure of G by cl(G), let ƒ be a mapping of cl(G) into Y. 

For X~ Y and ƒ a compact mapping, Leray and Schauder [9] gave 
a definition of topological degree for mappings of the form ƒ —ƒ on 
the open set G over a point a of X whenever (I—f)"1^) is a compact 
subset of G. The Leray-Schauder degree for compact displacements 
is the most subtle tool of the classical fixed point theory of compact 
mappings, and if one proposes to carry through an extension of the 
fixed point and mapping theory to more general mappings which are 
neither of the form ƒ or ƒ —ƒ, with ƒ compact, an important step in 
such a program is to find a more general framework for the concept of 
the topological degree. In particular, it would be desirable to bring 
within such a framework the various classes of nonlinear noncompact 
operators for which fixed point and mapping results have been ob­
tained in recent yeafs: the asymptotically compact mappings, the 
nonexpansive and semi-contractive mappings of uniformly convex 
Banach spaces X into themselves, the monotone and semimonotone 
mappings of a reflexive Banach space X into its conjugate space X*, 
the accretive and semi-accretive mappings of a Banach space X into 
itself, and their more general analogues (cf. [l], [2], [3], [4]). 

It is the object of the present note to present such a framework for 
a class of mappings which extends that considered by one of the writ­
ers in [ l] . We give below, by successive stages, the definition of the 
generalized degree and establish its basic properties. 

DEFINITION 1. Let X be a Banach space, G an open subset of X, Ta 
continuous mapping of cl(G) into X such that I—T is locally compact 
{i.e. each point of cl(G) has a neighborhood N such that I — T(N) is rela­
tively compact in X) and such that T~x(a) is compact for a given element 
a of X. Then we define deg(!T, G, a), the degree of T on G over a to be 
degLs(T, V, a), the Leray-Schauder degree of T over a on any open 
neighborhood V of T-1 (a) such that (I—T) ( V) is relatively compact in X. 

LEMMA 1. Let Tbea mapping satisfying the conditions of Definition 1. 
Then: 

(a) deg(r, V, a) is well-defined by Definition 1 for any a such that 
T~l(a) is a compact subset of G. 
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(b) The degree is additive in the usual sense, i.e. if G\ and G2 are open 
subsets of G such that T~l(a) has no points in common with (cl(G) 
- (GiUG 2 ) )U(GinG 2 ) , then 

deg(7\ G, a) = deg(r, Gh a) + deg(r, G2, a). 

(c) If deg(r , G, a) 5*0, then T has an a-point in G, i.e. there exists 
some Xo in G such that T(x0) = a. 

(d) If fi is an open subset of XX [0, l ] , fi* its slice at parameter 
value t, T a mapping of cl(0) into X such that w — T is locally compact, 
(w(x, t)=x), and such that for a given a in X, T~x(a) is a compact subset 
ofQ,, then (setting Tt to be the induced mapping ofQt into X) deg(r*, fi*, o) 
is well-defined for all t in [0, 1 ] and independent of t. 

PROOF OF LEMMA 1. This is an easy direct translation of the cor­
responding properties of the Leray-Schauder degree (Leray-Schauder 
[9], Nagumo [lO], Cronin [7]). 

DEFINITION 2. Let X and Y be real Banach spaces, G an open subset 
of X, Sa mapping of cl(G) Xcl(G) into Y such that the following condi­
tions hold: 

(a) For each fixed v in cl(G), SV = S(-, v) is a homeomorphism of G 
on an open subset Gv of Y, with Sv mapping cl(G) homeomorphically 
onto cl(Gv). 

(b) The mapping v—>Sv is a locally compact mapping of cl(G) into 
the space of homeomorphisms of cl(G) into F, with the topology of uni­
form convergence on cl(G). 

Let T be the mapping of cl(G) into Y given by T(u)=S(u, u), for 
u in cl(G). We suppose that for a given element a of Y, T~x(a) is a com­
pact subset of G. Then we apply the following procedure to obtain a con­
cept of degree f or the pair [T, S], (i.e. T in the representation S): 

(1) Let Gi be the subset of those vin G such that the equation S(u, v)=a 
has a solution u in G. Let C be the mapping of Gi into X given by 
C(v) =u, where u is this solution, and suppose that G\ is open and that 
C can be extended to a mapping of cl(Gi) into X. Then: 

(2) We set 

deg([r, S], G, a) = deg(/ - C, Gx, 0). 

THEOREM 1. Let X and Y be Banach spaces, G a connected open sub­
set of X, Sa mapping of cl(G) Xcl(G) into Y which satisfies the condi­
tions (a) and (b) of Definition 2. Let T(u) ~S(u, u) for u in cl(G), and 
suppose that T~l(a) is a compact subset of G f or a given element a of Y. 
Then: 



i968] NONCOMPACT NONLINEAR MAPPINGS IN BANACH SPACES 673 

(i) The set Gi = {z;|z/£:G, there exists u in G such that S(u, v)=a} 
is an open subset of G and hence of X. 

(ii) The set G+= {z>|z>£cl(G), there exists u in cl(G) such that 
S(u, v) =a} contains the closure of &. The mapping C+ of Gf into X 
given by C+(v)=u, with u as above, is a locally compact mapping of 
cl(Gi) into X and its fixed point set is a compact subset of G\. C+ has C 
as its restriction to Gi, and maps bdry(Gi) into bdry(G). 

(iii) deg( [ r , S], G, a) is thus well-defined by the steps (1) and (2). 

PROOF OF THEOREM 1. Suppose that v lies in Gi. Then a lies in 
SV(G), and there exists a ball about a which does not intersect 
5v(bdry G). If vi is sufficiently close to v, there exists a ball about a 
which does not intersect 5v i(bdry G), and we may assume that SVl(u) 
also lies in this ball. On the other hand, since SV1 is a homeomorphism 
of G on GVl which carries bdry(G) onto bdry(GVl), it follows that GV1 

coincides with one component of X—SVl(bdry G). Hence, the whole 
ball about a lies in Gvv i.e. in particular a lies in SVl(G) and V\ lies in 
Gi. Hence Gi is open in X. 

If v lies in cl(Gi), there exists a sequence {vk} in Gi converging to v. 
In particular, SVk converges to Sv. Let S(uky vk)—a. Then S(uk, v) 
= a+ [S(uk, v)—S(ukl vk)]—>a. Since Sv is a homeomorphism of cl(G) 
on cl(Gv), it follows that a lies in cl(Gv), i.e. v lies in Gi+. The mapping 
C+ thus is defined on cl(Gi) and maps cl(Gi) into cl(G), and if C+{v) 
lies in G, v must lie in G\. Hence C+ maps the boundary of G\ into the 
boundary of G. If v is a fixed point of C+, then S(v, v) =a , and v lies 
in T"1(a) so that v lies in G and hence in G\. Conversely every point 
of T"1^) is a fixed point of C+, and hence the fixed point set of C+ is a 
compact subset of Gi. Finally, if v is a point of cl(Gi), there exists a 
neighborhood N of v such that the map v—*SV carries N into a rela­
tively compact set of homeomorphisms of G into Y. Let {vk} be an 
infinite sequence in N. Then by passing to an infinite subsequence, 
we may assume that SVk—>S', where S' is a homeomorphism of cl(G) 
into F. If uk = Sv~

1(a), then S'(ujc)—*(i, so that uk—>(S')"~l(a). Then 
C+(vk) =uk converges and C+ is locally compact. Q.E.D. 

In the special case, when S(u, v) =h(u)+f(v), with h a homeomor­
phism of cl(G) into Y and ƒ a locally compact mapping of cl(G) into 
F, we identify deg([7\ S], G, a) with d e g ( / - C , Gh 0) where C(v) 
^hrx{a--f(v))t Gi=/~1(a — h{G)). For the even more special case 
where A = /— U with U a strict contraction and ƒ of finite dimension, 
our definition coincides with definitions of the degree applied by 
Cacciopoli [5], Cronin [7], and Cesari [6]. For the slightly more gen-
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eral case in which h = I~U, U strictly contractive, and ƒ is compact, 
it is related to a definition given in a recent note of Frum-Ketkov[8]. 

THEOREM 2. For the degree deg([jT, *S], G, a), as defined above, we 
have the properties corresponding to those given in Lemma 1 : 

(i) The degree is additive. 
(ii) If deg( [ r , S], Gy a)?*0, then T-l(a) is nonempty. 
(iii) Let Q be an open subset of X X [0,1 ], Qt its slice att,Ta mapping 

of cl(O) into Y such that for a given element a of F, T~l(a) is a compact 
subset of fi. For each t in [0, l ] , let St be a mapping of cl(Q*)Xcl(ö*) 
into Y such that Tt(u)=St(uf u)for all u in cl(Q<), with St satisfying the 
conditions (a) and (b) of Definition 2 for S. Suppose that for each (v, t) 
in 0, there is a neighborhood NvQQt and an interval J such that 
NVXJ<Z& and the map (w, s)-+Se(', w)\ NV is locally compact and con­
tinuous on NVXJ. Then deg ( [ r t , *Se], fit» o) is well-defined and inde­
pendent of tfor t in [0, l ] . 

PROOF OF THEOREM 2. Properties (i) and (ii) follow trivially from 
the definition of deg( [ r , 5 ] , G, a). We need only prove property (iii). 
For each t in [0, l ] , the domain c\{tit) of Tt may be different. Since 
T~l{a) is compact, we may cover it by a finite number of product 
neighborhoods in Û of the form iVyX(/y, tj+\). When two such neigh­
borhoods overlap, we may assume that for any common value of t, 
(Nj-Nk)x{t} does not intersect Trl(a). Hence deg( [ r t , St], Njf a) 
= deg([ r , 5 ] , Njc, a), and we may assume without loss of generality 
that 0 = iVX [0, l ] and that St is uniformly continuous from [0, l ] 
to the space of mapping of NXN to F. 

Let G\tt— [v\a lies in St,v(N)}. By the same argument as we used 
in the proof of Theorem 1, fli = U^[o,i] G\ttX {/} is open in XX [O, 1 ] 
and the mapping Cf is uniformly continuous in t. Applying Lemma 1, 
we have deg(7— C*, Gi, t, 0) is independent of /. Since deg( [Tt, St ], Î2*, a) 
= deg(I— Cty Gi,t, 0), the conclusion of Theorem 2 follows. Q.E.D. 

If we wish to make the degree we have defined depend only on the 
mapping T and not on the representation 5, we can do so by restrict­
ing the homeomorphisms Sv to lie in a convex class, as follows: 

THEOREM 3. Let The a mapping of c\(G) into F, with T(u)~S(uf u) 
for a mapping S of cl(G)Xcl(G) into Y satisfying the conditions (a) 
and (b) of Definition 2. Suppose that T"1(a) is compact for a given ele­
ment a of F, and that there exists a convex set H0 of homeomorphisms of 
cl(G) into Y such that Sv lies in H0for each v in cl(G). Then: 

(a) For any pair of representationsy So and Si satisfying this condi­
tion for a given H0for the same mapping JH, 
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deg([r ,5 0 ] , G, a) « deg([2\Si], G, a). 

(b) If f in addition, the mapping v—*Sv is compact from c\{G) to the 
homeomorphisms of cl(G) into Y, then deg([7\ S), G, a) =deg(T, G, a) 
is invariant under permissible homotopies, i.e. under homotopies of Tt 

on open sets Î2* in X such that U*e[o,ij titX {t} is open and Tt(u) 9*a on 
the boundary of 0*. 

PROOF OF THEOREM 3. PROOF OF (a). We consider deg( [T, St], G, a) 

where 5*= (1— t)S0+tSi. This is independent of t by property (c) 
of Theorem 2. 

PROOF OF (b). If the mapping v-+Sv is compact, then the condition 
that T~x(a) is a compact subset of G is equivalent to the condition 
that T~l(a) does not intersect the boundary of G. Let {Tt} be a 
permissible homotopy. We may assume without loss of generality 
that Q = GX [0, l ] , and by splitting up the interval [0, l ] into small 
subintervals, we may assume that T0(u) and T\{u) are at most e apart 
for u on the boundary of G and that 11T0 (u) — a\ \ > e f or all u in bdry (G). 
Let So and Si be representations of T0 and T\, respectively. Then 
St= (1 —t)So+tSi is a permissible homotopy of representations in the 
sense of Theorem 2(c). Q.E.D. 

We note that a number of the most interesting classes of homeo­
morphisms such as h = I— U with U a strict contraction, h & strongly 
monotone mapping, or A a strongly accretive mapping, etc. are 
closed convex sets in the sense of Theorem 3. As an illustrative corol­
lary of Theorems 2 and 3, we consider the following simple result: 

THEOREM 4. Let G be an open convex subset of a Banach space X, 
0 £ G , U a strictly contractive map of cl(G) into X, (i.e. ||Z7^— Uv\\ 
m*k\\u—v\\ with k<l), R a locally compact mapping of cl(G) into X. 
Suppose that for each t^l, tI~-(U+R) has a compact set of zeroes in 
cl(G) which does not intersect the boundary of G. Then U+R has a 
fixed point in G. 

PROOF OF THEOREM 4. Apply Theorem 2 to St(u, v)~(I—tU)u 
-tRv. Q.E.D. 

As the final stage of our note, we consider the limit case of those 
mappings T which are limits of those represented in Definition 2. 

THEOREM 5. Let X and Y be Banach spaces, T a mapping of cl(G) 
into Y where G is an open subset of G. Let H0 be a convex family of 
homeomorphisms of cl(G) into Y. Suppose that there exists a sequence of 
mappings { 7&} converging uniformly to T on cl(G) with each 7& of the 
form Tk(u)=Sk(u, u) where Sk is a mapping of cl(G)Xcl(G) into Y 
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satisfying the conditions of Definition 2 with each Sk,v lying in Ho and 
with the mappings v-*Sk,v compact on cl(G). Then: 

(a) Hm* deg( [Tk, 5&], G, a) exists and may be denoted by deg( [T, S], 
G, a), provided that there exists €>0 such that for u on bdry G, 
\\T{u)-a\\^e. 

(b) If deg([ r , 5 ] , G, a) 9^0, then a lies in cl(T(G)). In particular, 
if T(cl(G)) is closed, then a lies in T(G). 

(c) deg([7\, St], fi*, a) is invariant under homotopies provided that 
dis t ( r (bdry 0), a ) > 0 . 

The proof of Theorem 5 will appear elsewhere. The restriction that 
the homeomorphisms Sk,v lie in the convex set Ho is not necessary if 
one assumes the Sk are defined on XXX and converge uniformly on 
bounded subsets of XXX ( [ l ] ) . 
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