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Let X be a real Banach space, U and T mappings of a subset G of X 
into X, Then U is said to be nonexpansive if for all u and v in Gt 

(1) \\U(u)-U(v)\\£\\u-v\\, 

while T is said to be accretive if for all u and v of G, 

(2) (r(«)-rw,/(«-r))èo, 
where / is a mapping of X into its adjoint space X* such that for all 
u in X, (J(u)} ^)=|M|2 and ||/(^)|| HMI* 

In some recent papers ([7], [8], [9]), we have presented an exis
tence theory for solutions of nonlinear functional equations in uni
formly convex Banach spaces X involving nonexpansive and accre
tive mappings. These results were obtained by interweaving the fixed 
point theory of nonexpansive mappings with the theory of initial 
value problems for differential equations in X involving accretive 
operators. I t is our object here to sharpen this theory and to use the 
sharpened form to extend the preceding results to more general classes 
of operators obtained by compact perturbation from nonexpansive 
or accretive operators. When X is a Hubert space (or, more generally, 
has a weakly continuous duality mapping), such results were ob
tained earlier by the writer in [ l ] , [2], [4], The methods used there 
involving monotone operators do not apply in our more general con
text. 

We begin by defining two basic classes of nonlinear mappings, the 
first generalizing the mappings of the form U+C with U nonexpan
sive and C completely continuous, and the second, the mappings of 
the form T+C with T accretive and C completely continuous. (We 
recall that a map C of X into X is said to be completely continuous 
if it carries weakly convergent sequences in X into strongly conver
gent sequences in X.) 

DEFINITION 1. Let X be a Banach space, G a subset of X, U a 
mapping of G into X. Then U is said to be semicontractive if there exists 
a mapping VofGXG into X such that U(u) = V(u, u) for u in G, while : 

(a) For each fixed v in G, V(-, v) is nonexpansive from G to X. 
(b) For each fixed u in G, V(u, •) is completely continuous from G 
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to X, uniformly for u in bounded subsets of G, (i.e. ifvj converges weakly 
to v in G and {Uj} is a bounded sequence in G, then 

V(uj, Vj) — V(uj, v) —> 0, strongly in G). 

DEFINITION 2. Let X be a Banach space, G a subset of X, Ta map 
of G into X. Then T is said to be semiaccretive if there exists a mapping 
S of GXX into X such that T(u)=S(u, u) for u in G, while: 

(a) For each fixed v in X, S( •, v) = Sv is an accretive map from G to 
X such that either G = X and Sv is continuous or SV~SI,V+SQ,V where 
SitV+I has all of X as its range and SofV is the restriction to G of a 
bounded continuous accretive mapping of X into X. 

(b) For each fixed u in G, S(u, •) is completely continuous from X to 
X, uniformly for u in bounded subsets of G. 

Our basic results are the following theorems: 

THEOREM 1. Let X be a uniformly convex Banach space, G a closed 
bounded convex subset of X with 0 in the interior of G. Let U be a semi-
contractive mapping of G into X such that f or each x in the boundary of 
G, U(x) 9^\xfor any X> 1. Then U has a fixed point in G. 

THEOREM 2. Let T be a semiaccretive mapping of G into X as defined 
in Definition 2, where X and X* are uniformly convex. Suppose that 
T~l(B) is bounded f or each bounded set B. Then the range of T is all 
of X. 

Theorems 1 and 2, as well as other more precise results, follow from 
the following basic properties of semicontractive and semiaccretive 
operators given in Theorems 3 and 4, together with the more general 
existence theorems, Theorems 5 and 6. 

THEOREM 3. Let X be uniformly convex, G a closed bounded convex 
subset of X, U a semicontractive mapping of G into X. Then: 

(a) (7— U) is demiclosed, i.e. if u3- converges weakly to u0 in G and 
(I-U)Uj converges strongly to w, then (I—U)(uo)=w. 

(b) ( 7 - U)(G) is closed in X. 

THEOREM 4. Let X be uniformly convex with X* uniformly convex, 
T a semiaccretive mapping from a subset Go of X into X (as in Defini
tion 2). Then T is demiclosed and for any closed bounded convex subset 
G ofX, T(Gr\G0) is closed in X. 

THEOREM 5. Let X be a Banach space, G a closed bounded convex 
subset of X having 0 in its interior, U a mapping of G into X such that 
for each x on the boundary of G, U(x) 9^\x for any X> 1. Suppose that 
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for a given constant & g l and a mapping V of GXG into X, U{u) 
= V{u, u) for all u in G while 

||F(w, W) - V(v, w)\\ g k\\u - t»||, («, VywG G), 

and the map u—±V(-, u) is compact from G to the space of maps from G 
to X with the uniform metric. 

Then: 
(a) If k<l, U has a fixed point in G. 
(b) If kS 1 and (I— U){G) is closed in X, then U has a fixed point 

in G. 

THEOREM 6. Let X be a Banach space with X* uniformly convex, T 
a semiaccretive mapping from a subset of X into X {in the sense of 
Definition 2). Suppose that T~l{B) is bounded f or each bounded ball B 
in X, and that for each ball about the origin, T{B) is closed in X. 

Then the range of T is the whole space X. 

Theorem 1 follows from the Theorems 3 and 5, while Theorem 2 
follows from Theorems 4 and 6. 

PROOF OF THEOREM 3. For any demiclosed map T and any weakly 
compact subset Gt T{G) is closed. Hence it suffices to prove (J— U) 
demiclosed. If we replace U by U+wo, Wo fixed, we may take w = 0, 
and we have UJ—>UQ weakly, (ƒ— U)UJ—>0 strongly, and it suffices to 
show that (J— U){uo) = 0. By condition (b) of Definition 1, V{UJ, Uj) 
— V{uj, u)-^0 strongly. Hence Uj—V{uj} u)—>0 strongly. Replacing 
U by V(*9 u), we may assume without loss of generality that U is 
nonexpansive. 

Since X is uniformly convex, for each e>0 , there exists a largest 
5(e) > 0 , 5(e) g e such that if for any three elements x, u, and v of X 
and any X with O g X g l , we have ||#—u\\ g||wx — u\\ +£(e), ||ff—u|| 
g||wx--fl||+5(e), with U\=\u + {1—X)v, then 

||* — **x|| £» e\\u — u||. 

We assume diam G g l and following a device of Göhde [ i l ] , for a 
given e 0>0, we let {ey} be the sequence defined recursively by 
€y = £(ei-i). We note that if \\u— U{u)\\ gey, ||u— U{v)\\ gey, and let 
«x=Xtt + (l-X)w forX in [0, l ] , then || U{ux)~u\\ gll U{ux)- U{u)\\ 
+\\u- U{u)\\ g\\ux-u\\ +ey. Similarly, || Ufa)-v|| g ( k H I +*r 
Since ey = £(ey_i), it follows that \\u\ — Ufa)\\ 2§€y-i* 

By thinning out the sequence {%}, we may assume that for each 
j , \\uj— U{uj)\\ gey. If 3/ is any element of the convex span of the se
quence {uj}, after this thinning out process has been carried through, 
we assert that \\y — U{y)\\ ge0 . Indeed, for y in the convex span of 
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[lij, • • • , Uk] (written with ascending indices), ||y — U(y)\\ â«/- i . For 
two elements [u9-f Uk], this follows from the preceding paragraph. If 
it is true for the s elements [ujv • • • , uk], it is true for (s+1) elements 
[UJ, Ujv • • • , uk] since an element of the convex span of the latter set 
is a convex linear combination of uj and of an element of the convex 
span of [UJV • • • , « * ] . Since UQ is the weak limit of the thinned-out 
sequence {uj}9 it lies in the convex span of the sequence. Hence 
||Wo— î7(wo)|| ëi€o. Since e 0 >0 was arbitrary, it follows that Uo=* U(uo). 

Q.E.D. 
PROOF OF THEOREM 4. As in the proof of Theorem 3, it suffices to 

prove that T is demiclosed, and we may replace T by S(- , w0) and 
assume that T is accretive and satisfies condition (a) of Definition 2. 
By the results of [7], for each v in Go, the domain of T, the initial 
value problem 

(3) du f at = - T(u)9 t^O; «(0) = v, 

has one and only one weakly continuously differentiate solution u 
on i?+, the mapping U(t) for each / ^ 0 given by U(t)v~u(t) is a non-
expansive map of Go into X, and for all JèO, || r(«(/)) | | ^ | | T(v)\\. 

Suppose then that Uj-*Uo weakly and that T(UJ)—>Q strongly in X. 
If G is the convex closure of the sequence {%}, it suffices to show 
that there exists an element u' in the closed bounded convex subset G 
for which T(u') is defined and equals 0. As we have already noted in 
[8], such an element u' is precisely one lying in the common fixed 
point set of the mappings i7(/), *>0. To show that this common fixed 
point set is non void, it suffices to show, since the mappings U(t) 
commute, that each U(t) has a fixed point in G. However, 

||% - U(i)u^\ S f \\T(U(t))uj\\dt S t\\T(uj)\\ - » 0 (ƒ -* + «>)• 
J o 

Applying Theorem 3, we see that U(t) has a fixed point in G. Q.E.D. 
PROOF OF THEOREM 5. We note first that conclusion (b) of Theorem 

S follows from conclusion (a). Indeed, if U is a mapping satisfying 
the conditions of (b), then for each k with 0 < & < 1 , the mapping 
Uk(x)~kU(x) satisfies the condition of (a) with Vk(uy v)~kV(u, v), 
and on the boundary of G, Uk(x)~\x implies that U(x)=\k""lx. 
Applying the conclusion of (a), we see that Uk has a fixed point Uk 
in G. As k->l, Uk~U(uk)~(k~~l)U(uk)->0. If (I-U)(G) is closed, 
it follows that U has a fixed point in G. 

The proof of conclusion (a) follows a variant of the argument of 
[5]. For each t with 0 g / ^ 1, we set Ut(x) = tU(x). Our hypothesis on 
the nonexistence of eigenfunctions of U on the boundary of G with 
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eigenvalues X > 1 , implies that either U has a fixed point on the 
boundary of G, (the trivial case), or none of the mappings Ut have 
fixed points on the boundary of G. For each t and each w in G, the 
mapping Vt(*, w) is a strict Contraction on G with values in X. Hence 
the image of the interior of G under the mapping J—F<(*, w) is 
an open subset GttW of X and (ƒ— Vt(-, w)) maps the boundary of G 
on the boundary of GttW- For each v in GtlWi there exists exactly one 
element u of G such that w— Vt(u, w) ~v. We denote this element by 
Ct,v(w). Since the map w—>F(», ze>) is a compact map of G into the 
space of maps from G to X with the uniform metric, Ct,v is a compact 
map of G into X for each fixed t and i>, and indeed the union of the 
images over all / in [0, l ] and all v in G of the maps CttV is relatively 
compact in X. 

For each / in [0, l ] , we now let \[/t= {w\wGG, 0 £<?«,«,} and for 
each w in \[/t, we define Qt(w) = Ct,o(w). Similarly, we define yp as the 
subset of X XI consisting of those points [tt w] such that w lies in \f/t, 
and we set Q(t, w) = Qt(w). We note that if w lies in the boundary of 
\f/t, then Ctio(w) is well defined and lies on the boundary of G. Hence 
Q may be extended by continuity to a compact mapping of the 
closure of if/ into X, and maps all points of the boundary of \(/ into the 
boundary of G. Moreover, \[/ is an open subset of X X I, since if 0 lies 
in the image of J— Vt(-, w) acting on the interior of G for a given 
pair [t, w], then for [s, z] near [t, w], the equation u— Va(u, z ) = 0 
must have a solution u in the interior of G since the image of the in
terior of G by the homeomorphism J— Vs{*, z) must contain an entire 
component of X— (I— V8(-, s))(bdry G). By choosing [$, z] near 
D, w], we can ensure that the boundary image above does not inter
sect a given ball about 0 while the image of Ctto(w) under (ƒ — V8(*, 0)) 
lies in that ball. Hence the whole ball including the point 0 is covered 
by the image of (J— Vs(-, z)). 

To complete the proof, we apply the Leray-Schauder theory [14]. 
For / = 0, Ço is the constant map 0 defined on ^o = G, and the degree 
of (/—Co) on ypo must equal + 1 . For all t and all x on the boundary 
of *Af, Qtoc is never equal to x, since if it were, we should have 
x— Vt(x, x) =x— Ut(x) = 0 with x — QtX lying on the boundary of G. 
Hence Qi has a fixed point in 1̂ 1, which implies that x— U(x) = 0 has 
a solution in G. Q.E.D. 

The proof of Theorem 6, which is another variant of the argument 
of [S], will be given in detail elsewhere. 

In conclusion, we note that the result of Theorem 3 yields the fol
lowing generalization of the result of Browder-Petryshyn [lO] : 
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THEOREM 7. Let X be a uniformly convex Banach space, G a closed 
bounded convex subset of X, U a nonexpansive mapping of G into G. For 
a constant t with 0 < / < l , let Ut — tU+il—t)!. Suppose that U has at 
most one fixed point y in G. Then for each x0 in G, the sequence (Ut)

nXo 
converges weakly to y in X. 

PROOF OF THEOREM 7. Let xn = (Ut)
nx0 for a given x0 and n^l. 

To show that xn converges weakly to y, it suffices to show that each 
weakly convergent subsequence of {xn} converges to a fixed point of 
U. I t suffices by the demiclosedness of U to show that (ƒ— U)(xn)—»0. 
Since Ut is also nonexpansive and y is a fixed point of Ut, \\xn— y\\ is 
nonincreasing in n, and hence converges. On the other hand, xn+i—y 
= t(U(xn)-U(y)) + (l-t)(xn-y)9 where \\U(x«)-U(y)\\g\\xn-y\\. 
By the uniform convexity of X, it follows that U(xn) — xn—*0. Q.E.D. 
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