FLATTENING A SUBMANIFOLD IN CODIMENSIONS ONE AND TWO

BY J. C. CANTRELL¹ AND R. C. LACHER²

Communicated by O. G. Harrold, November 3, 1967

Let M and N be manifolds with $M \subset Int N$, and assume that M - X is locally flat in N, where X is some subset of M. We are interested in finding conditions (intrinsic, placement, dimensional, etc.) which, when placed on X, imply that M is locally flat in N. Extremely useful and satisfying answers are provided by Bryant and Seebeck in [2], assuming that dim $N-\dim M \ge 3$. We announce here a method for deducing local versions of Corollary 1.1 of [2] in codimensions one and two.

DEFINITIONS. If M is a manifold, a *collaring* of Bd M in M is an embedding λ of Bd $M \times [0, \infty)$ into M such that $\lambda(x, 0) = x$ for each x in Bd M. We use \mathbb{R}^n to denote euclidean n-space, \mathbb{B}^n the closed unit ball in \mathbb{R}^n .

THEOREM. For integers $0 \le k < m \le n$, let D be an m-cell in \mathbb{R}^n and let E be a k-cell in Bd D. Assume that the following condition is satisfied:

D - E is locally flat in \mathbb{R}^n , and E is locally flat in Bd D.

Then $(\mathbb{R}^n, D) \approx (\mathbb{R}^n, \mathbb{B}^m)$ if and only if $\lambda(E \times I)$ is locally flat in \mathbb{R}^n for some collaring λ of Bd D in D.

The proof of this theorem is similar to the proof of Theorem 4.2 of [7]. Theorem 4.1 of [7] must be used more carefully to replace Corollary 3.2 of [7].

A detailed proof of the above theorem, together with applications and generalizations, will appear elsewhere. We present below the immediate implications of [2]. (Actually, in an earlier paper which is in press, Bryant and Seebeck prove a local form of Corollary 1.1 of [2] which is enough to yield the following applications.)

REMARK. There are no dimensional restrictions (other than $0 \le k < m \le n$) in the above Theorem.

APPLICATION 1. Let D be an m-cell in \mathbb{R}^n , and let E be a k-cell in Bd D. Assume that

D - E and E are locally flat in \mathbb{R}^n , and E is locally flat in $\mathbb{Bd} D$.

If $k \leq n-4$ then $(\mathbb{R}^n, D) \approx (\mathbb{R}^n, \mathbb{B}^m)$.

¹ Supported by the National Science Foundation and a Alfred P. Sloan fellowship.

² Supported by the National Science Foundation.

PROOF. Let λ be a collaring of Bd D in D. If $n \ge 4$ and k = 0, then $\lambda(E \times I)$ is locally flat in \mathbb{R}^n by [3]. If $n \ge 5$, $\lambda(E \times I)$ is locally flat in \mathbb{R}^n by Corollary 1.1 of [2]. In either case the result follows from our Theorem.

REMARKS. 1. The analogue of Application 1 for $k=n-3\geq 0$ is false; the Theorem may still be applied to specific cases, however.

2. There are no restrictions on *m* and *n* in Application 1.

DEFINITION. Let $\beta(n)$ denote the following conjecture: If D_1 and D_2 are locally flat (n-1)-cells in \mathbb{R}^n such that $D_1 \cap D_2 = \operatorname{Bd} D_1 \cap \operatorname{Bd} D_2$ is an (n-2)-cell whose boundary is locally flat in both Bd D_1 and Bd D_2 , then $D_1 \cup D_2$ is locally flat in \mathbb{R}^n .

Conjecture $\beta(3)$ is proved in [5]. A proof of $\beta(n)$, $n \ge 5$, is announced and outlined by Černavskii in [4]. $\beta(4)$ has recently been proved by Černavskii and by R. C. Kirby.

APPLICATION 2. Let D be an (n-1)-cell in \mathbb{R}^n , and let E be a k-cell in D. Assume that

(D, E) is a proper locally flat cell pair, and D - E and E are locally flat in \mathbb{R}^n .

If $k \leq n-4$ then $(R^n, D) \approx (R^n, B^{n-1})$.

PROOF. Let $f: (B^{n-1}, B^k) \approx (D, E)$ be a homeomorphism. (See [6].) Let $D_1 = f(B_+^{n-1})$ and $D_2 = f(B_-^{n-1})$. By Application 1, D_1 and D_2 are locally flat. By $\beta(n)$, D is locally flat.

REMARKS. 1. The analogue of Application 2, with D an (n-2)-cell, is false for $n \ge 3$.

2. The Theorem and Applications can be applied locally to embeddings of manifolds.

References

1. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.

2. J. L. Bryant and C. L. Seebeck, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1967), 378-379.

3. J. C. Cantrell, n-frames in euclidean k-space, Proc. Amer. Math. Soc. 15 (1964), 574-578.

4. A. V. Černavskiĭ, Singular points of topological imbeddings of manifolds, Dokl. Akad Nauk SSSR 167 (1966), 528-530 = Soviet Math. Dokl. 7 (1966), 433-436.

5. P. H. Doyle, Unions of cell pairs in E3, Pacific J. Math. 10 (1960), 521-524.

6. L. C. Glaser and T. M. Price, Unknotting locally flat cell pairs, Illinois J. Math. 10 (1966), 425-430.

7. R. C. Lacher, Some conditions for manifolds to be locally flat, Trans. Amer. Math. Soc. 126 (1967), 119–130.

University of Georgia,

UNIVERSITY OF CALIFORNIA, LOS ANGELES, AND INSTITUTE FOR ADVANCED STUDY