THE SOLUTION OF BOEN'S PROBLEM

BY ERNEST SHULT

Communicated by M. Suzuki, November 16, 1967

A finite p-group P is said to be p-automorphic if and only if it admits a group of automorphisms G which transitively permutes its elements of order p. A standing problem has been the proof of

C₁. p-automorphic p-groups of odd order are abelian.

A number of authors have proved special cases of C₁ as well as special cases of more general propositions [1, 2, 3, 5, 6, 7, 8]. Both C₁ and all of the generalizations of it which have been considered in the literature follow from Theorem 1 which appears below.

In [2] it is observed that if P is a smallest counterexample to C_1 , then there is associated with P, an anticommutative (not necessarily associative) algebra A over GF(p), whose dimension coincides with the number of elements in a minimal generating set of the p-automorphic group P. Further, if G is the hypothesized group of automorphisms of P, then G also acts as a group of automorphisms of A in such manner that both A and the Frattini-factor group of P are isomorphic as GF(p)G-modules. Accordingly, Kostrikin [6] has introduced the notion of homogeneous algebra, i.e. a finite dimensional algebra A over a finite field GF(q), which admits a group of automorphisms G, transitively permuting its nonzero elements. Such algebras enjoy two basic properties: (P_1) if q is odd, they are anticommutative [6], and (P_2) left multiplication by an element induces a nilpotent transformation of A [2]. Then C_1 is a consequence of the proposition:

 C_2 . If A is an homogeneous algebra of odd characteristic then $A^2 = 0$.

One may also define semi-p-automorphic p-groups (spa-groups) as finite p-groups admitting a group of automorphisms G which is transitive on the cyclic subgroups of order p. This carries with it the corresponding notion of spa-algebra, i.e. an anticommutative finite dimensional algebra A over GF(q), admitting a group of automorphisms G transitive on the 1-dimensional subspaces of A. (Property P_2 holds for such an algebra, but P_1 must be hypothesized if q is exceeded by the dimension of A.) The following two conjectures have been considered in [3, 7, 8]:

C3. Semi-p-automorphic p-groups of odd order are abelian.

 C_4 . If A is a spa-algebra of odd characteristic, then $A^2 = 0$.

The following implications hold: $C_4 \Rightarrow C_3 \Rightarrow C_1$, $C_4 \Rightarrow C_2 \Rightarrow C_1$. All of these, however, are consequences of the following

THEOREM 1. Let A be a finite dimensional algebra over GF(q) and suppose G is a group of automorphisms of A which acts transitively on the 1-dimensional subspaces of A. Suppose also that GF(q) contains more than two elements and that A has dimension greater than one. Then $A^2 = 0$ or A has no zero divisors.

The theorem differs from C_4 in that no hypothesis on anticommutativity is required, and that the result accommodates algebras over fields of characteristic 2.

In the discussion which follows, n will denote either the rank of a p-group, or else the dimension of the pertinent algebra. Similarly, G will denote the group of automorphisms (of a p-group or algebra) which satisfies the relevant transitivity condition. An easy result is that C_1 holds if G is cyclic [5]. In [1] and [2], C_1 is proved subject to the condition that either $n \le 5$ or that $n \ne 6$ and $p > n^{3n^2}$. This result was greatly improved by Kostrikin [6], who proved that C_2 holds if q > n - 6. Recently in [3], Dornhoff was able to sharpen this to 2q > n - 3.

Nearly two years ago, the author was able to show C_4 if either (i) n is a prime, or (ii) G is p-solvable, where p is the characteristic of the ground field [8].\(^1\) (The result for the condition (ii) was recently independently proved by D. Passman [7].) The fact that C_4 is implied by the p-solvability of G seems to be more useful than the information quoted in the previous paragraph. As an easy application of this, we have that a finite group containing one conjugate class of subgroups of order p (p odd) has abelian p-Sylow subgroups S if and only if elements of order p in S lie in the center of S (a result which figures in [4]). Moreover, Dornhoff was able to utilize this to show that C_4 (as well as C_3) is a consequence of 2q > n - 3 (see the final section of [3]).

Theorem 1 is an easy consequence of the following more general theorem whose proof from first principles will appear elsewhere [9].

THEOREM 2. Let A be a (not necessarily associative) finite dimensional algebra over GF(q) where q > 2. Let B be a left ideal of A satisfying

¹ These results were submitted to Pacific J. Math. in February and April of 1966 and, to the author's knowledge, still remain there, unrefereed.

 $B^2=0$. We suppose that for any $a\in A$, left multiplication of A by a induces a linear transformation of A whose restriction to the subspace B is nilpotent. Suppose also that A admits a group of automorphisms which leaves B invariant and transitively permutes the 1-dimensional subspaces of B. Then AB=0.

REFERENCES

- 1. J. Boen, On p-automorphic p-groups, Pacific J. Math. 12 (1962), 813-816.
- 2. J. Boen, O. Rothans and J. Thompson, Further results on p-automorphic p-groups, Pacific J. Math. 12 (1962), 817-821.
- 3. L. Dornhoff, p-automorphic p-groups and homogeneous algebras, In preprint, Yale University.
- 4. G. Glauberman, A characterization of the Suzuki groups, Illinois J. Math. (to appear)
 - 5. G. Higman, Suzuki 2-groups, Illinois J. Math. 7 (1963), 73-96.
- 6. A. I. Kostrikin, On homogeneous algebras, Izv. Akad. Nauk SSSR 29 (1965), 471-483.
 - 7. D. Passman, personal communication.
 - 8. E. Shult, On semi-p-automorphic groups. I, II In preprint.
 - 9. ——, On finite automorphic algebras, Illinois J. Math. (to appear).

SOUTHERN ILLINOIS UNIVERSITY