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Let £ be a split semisimple Lie algebra over a field <E> of character­
istic zero and <£ = 3C+ ]C«eA«£a be the rootspace decomposition of <£ 
relative to a splitting Cartan subalgebra 5C, where the subset A of 3C* 
is the corresponding root-system. Fix a simple system of roots 
{c*i, «2, • • • , ai}, for which the positive (resp. negative) roots are 
denoted by A+ (resp. A_). For a EA let Ra be the Weyl reflection 
sending a into —a and fixing the elements of 3C* orthogonal to a with 
respect to the inverse Killing form ( , ). I t is given explicitly by 
\Ra=\—\(ha)<x where &a£3C is defined by requiring \(ha) 
= 2(a, a)_1(X, a) for all X£3C*. Denote the group generated by 
{ i ? a | aEA} by W. We abbreviate Rai and hai by Ri and hi respec­
tively. The "simple" reflections R±, R^ • • • , Ri are Coxeter genera­
tors of the Weyl group W. Let % be the universal enveloping algebra 
of <£, and <U+ (resp. ai-) the subalgebra with identity 1 generated by 
<£+= ]C«eA+£a (resp. <£_= ]T)«€A-JBa). 

I t is an established fact that the notions of <C-module and «U-module 
are interchangeable. Here, and throughout, the word "module" is an 
abbreviation for the word "right-module." Our object in this paper 
is to study the structure of the JC-module 35A = clt/<3A for arbitrary 
A£3C*, where °U is regarded as a module under right-multiplication 
and $A is the right-ideal of % (i.e., submodule of %) generated by 

£ + U { A - A(*)-l |*eoc}. 

It is known (cf. Cartier [4, p. 17-04]) that 33A has a unique maximal 
proper submodule and hence a unique irreducible quotient-module 
which we denote by 2)?A. 33A "admits a complete weightspace decom­
position" in the sense that it is the direct sum of its weightspaces 
33A(\), where for any «C-module SDÎ and any X£3C* the weightspace 

SK(X) is defined by 

2K(X) = {00 G 2»I xh = X(*)* for all h E 3CJ ; 
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and also, 35A "has A as the highest weight" in the sense that 33A(X) 5^0 
implies X^A. (Here X ^ M means that M~*X is a nonnegative integral 
linear combination of the simple roots a%, c^, • • • , au) These two 
properties hold for every quotient-module on 33A, and in particular 
for 23ÎA. I t is easy to see that 01- is a direct summand (as a vector-
space) of g A in CU. From this, one concludes that dim 35A(\) = P ( A — X ) 
where P is Kostant 's partition function. An element of 35A is called 
<£+-extreme if it is annihilated by £+. 

THEOREM I. Any submodule 3)î of 35A is generated by the £+-extreme 
weight-vectors in SDÎ. 

(An element of a weightspace 9W(X) is called a weight-vector of -DÎ.) 
The submodule generated by a nonzero <£+-extreme element of the 

M-weightspace 35A(M)
 1S isomorphic to 35M. Thus in view of Theorem 

1 if one knew all the module-injections 35M—• 93A, one would know all 
the submodules of 93A. In fact this knowledge would also settle the 
inclusion structure of the lattice of submodules of 93A. (Note that 
every nonzero homomorphism 93M—* 93A is injective.) 

The action of the center Z of 'U on 93A is given by an algebra-homo-
morphism %A: Z—>$. In fact, XA is the so-called infinitesimal charac­
ter. Harish-Chandra [l , p. 73] has shown that 

(1) xM ^ XA if and only if M + 8 = (A + 8)flfor some a £ W> 

where 8 is half the sum of all the positive roots. (Equivalently 
8=Xi+X2+ • • • +Xj where Xi, X2, etc. are such that \i(hj) is 1 if i=j 
and 0 otherwise. For another proof of (1) see Cartier [4, p. 19-09]. 
Cf. also our concluding paragraph.) Hence a necessary condition for 
the existence of a module-injection 93M—* 35A is 

(2) M ^ A and M = (A + 8)* - 8 for some <rEW. 

(M rg A is necessary because otherwise 35ACM) = 0.) Examples show that 
(2) is not sufficient. 

The simplest situation when 93 M—> 35A exists arises when for some i 

(3) M - ( À + « ) * < - 8 ^A. 

Then A—M = (A(/^) + l)au, and M^A amounts to A(hi) +1 being a 
positive integer. Let ƒ* be a fixed nonzero element of .£-_«,. Under (3) 
it is easily seen that 

(4) the module-homomorphism of % into % given by the left-multiplica­
tion by /fMM+i induces an injection of 35 M into 35A (i-e- maps $u 
into g A). 
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Since dim 3SA(M)=P(A—-M) = 1 (assuming (3)) it is clear that 33A 
contains a unique copy of 33M, i.e., the homomorphism 33M—» 33A 

described in (4) is the only one apart from scalar multiples. Even 
without the hypothesis (3) one has (for arbitrary A and M) the 
following 

THEOREM 2. 33A never contains more than one copy of 33 M. 

The proof is again by counting dimensions, though much more 
delicate. As a first step it is possible to show that it suffices to prove 
Theorem 2 in case 33 M is irreducible. Then one notices that if in that 
case this theorem were to be false one would have 

P(A - X) = dim 33A(\) è 2 dim 33MCX> - 2P(M - X) for all X G 3C*. 

But this is seen to be impossible on putting Xo=A—M and /x=M—X 
in the following. 

LEMMA 3. Given XoE3C*, one can find ju such that 

P(X0 + M ) < 2P(M). 

The proof of this is based on the fact that P(X) is bounded by a poly­
nomial function of X. 

Since for any given A there are only a finite number of M satisfying 
(2), it is clear from Theorems 1 and 2 that 33A has only a finite num­
ber of submodules. In fact for a "general" A, 33A is itself irreducible. 
Specifically, this is so in case A(ha) is a noninteger for each a £ A . 

Let ©(01-) denote the division ring of quotients of 01- [2, p. 166]. 
As before 0j^/ t- £ <£-«,-. One says X£3C* i s integral if X(fet) is an integer 
for l^i^l; then X* is also integral for a*GIF. The following is a key 
result. 

THEOREM 4. Let X be integral, and (ii, U, • • • , ik) be a sequence drawn 
from the set {1, 2, • • • $l}. The element f£f% • • • /J* of ©(01.) where 
the integers mf «2, • • • , #* are defined by nq=(\Riv Ri2 • • • R^) 
(hiq), depends only on X and the product ar — R^R^ • • • R{k and not on 
the choice of the sequence. Denote this element by u(X, a). 

(For typographical convenience Xr is also written as Xr.) I t suffices 
to prove the theorem for dominant integral X (i.e., when \{hi) is a 
nonnegative integer for each i) and those sequences that are reduced 
(i.e., for which <r can not be written as a product of less than k simple 
reflections). I t is easily seen that then »i, w2, • • • , nk are all nonnega­
tive integers. Applying (4) k times for X—S, XP1 — 8, XPii?2 — S, • • • 
etc. in place of A, it is easily seen that the left-multiplication Lu by 
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u=zfiifh ' ' * fik induces an injection of 85 M into 85A where A =X — S 
and M=X<r — S. Thus in view of Theorem 2 if another sequence 
0*i» J2, • • • , jk) satisfying a = RjlRj2 • • • Rjk yields u1 in place of u, 
then Lu = cLu> for some scalar c. That gives u = cu'. To show that in all 
cases c = 1, it suffices to do so when £ is simple of rank 2, and cr is that 
unique element of W which sends A+ into A_. This is because W is a 
Coxeter group. For each of the three possibilities for £, viz., A2, B2 or 
G2, a can be written in two different ways with k equal to 3, 4 or 6 
respectively. Thus 

(5) far At: fT/Tf? = &T£, 
where m~\(h\) and n=\(h2). In the same way 

(6) for B2: fif2 / i f2 = f2/1 ƒ2 / i ; and 
/^»\ /. ••» .m m+n 2m+3n m+2n w+3n n n m-f-3n m+2n 2m+3n «i+n m 
(7) > r G2: / i / 2 ƒ1 ƒ2 ƒ1 J2=f2fi f2 fi ƒ2 ƒ1. 

Here for B2 and G2 we have taken <*i to be the shorter simple root; 
since the two simple roots have unequal length, the statements (6) 
and (7) are not symmetrical in the indices 1 and 2. 

(5) is easy to prove ab initio. In (6) and (7) let u and u' be respec­
tively the left and right sides. We saw that u = cu'. But it can be 
shown that the action of u and ur is the same, and is not zero, on a 
highest weight-vector of the finite-dimensional <£-module with high­
est weight mXi+wX2. Hence c = l. It may be remarked that (6) can 
also be proved directly (i.e., without using u — cu') though clumsily. 
But no such direct proof of (7) is known. Thus if no simple component 
of <£ is of type G2l Theorem 4 can be proved without invoking a diffi­
cult result, Theorem 2, on infinite-dimensional JE-modules. 

THEOREM 5. For integral A, 83A contains a copy of 85M for M 
= (A+8y — 8ifand only if u(A+8,<r) (defined in Theorem 4) is in CU-. 

Note that this criterion does not make sense for A nonintegral. On the 
positive side we have the following result which is hard to prove, 
and should be regarded our deepest finding. This generalizes (4). 

THEOREM 6. Let a £ A and suppose (A+8)(ha) is a nonnegative inte­
ger. If A is integral, u(A+ô, Ra) is in cll_, so that 85A contains a copy 
of 85M for M = (A+S)i?« — 8=A— (A+ô)(ha); the latter conclusion is 
valid, however, even if A is not integral. 

It follows that the following condition on A and M ensures the exis­
tence of a copy of 8? M in 85A: 
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there exist positive roots yi, y2f • • • ,ym such that 

/o\ À «= Ao ^ Ai ^ A2 è • • • ^ Àm = M 

holds where Aq is recursively defined to be 

(Aq-i+ô)Ryq~ôfor l g g g w . 

This sufficient condition should be contrasted with the necessary 
condition (2). If for a given A the two conditions on M coincide one 
knows all submodules of 93A. This is precisely what happens when <£ 
is of rank 2 and A is integral. Examples show that in general (8) does 
not coincide with (2) even for integral A. 

CONJECTURE 1. The condition (8) is also necessary f or 93 A to contain 
a copy of 33M-

An affirmative answer to this has interesting consequences which 
we proceed to discuss. The following is an easy initial step. 

THEOREM 7. The composition factors of 93A are all nonisomorphic and 
consist of Muf or all those M for which 93 A contains a copy of 93M-

Now we introduce the notation Aff to stand for (A+8)*— 8. Clearly 
(A<r)T=A(rr. For sake of simplicity from now on we restrict our atten­
tion to the situation where A is integral and A, ?̂ A whenever <r ̂ id. To 
suit this situation it is more convenient, however, to replace A and M 
in the preceding by A, and Ar where now A is dominant integral; this 
can be done for unique A, <r and r under the assumption of the last 
sentence and (2). The condition (8) then becomes a condition on cr 
and r independent of (our new) A : 

there exist positive roots y%, 72, • • - , 7m 
(9) such that r = <rRyxRy% • • • Rym and 

7a £ A+<rRyiRy2 • • • Ry^for 1 g q ^ tn. 

We use this condition to define a partial-ordering on Wf and write 
<T-<T (equivalently T>-O) in place of (9). The identity is the lowest 
element in this ordering on W, and the element <r0 which carries A+ 

into A- is the highest. It can be seen that if r = i?trR*2 • • • Rik is a 
reduced expression for r, then <T-<T if and only if ar^R^R^ • • • R$p 

where (juh, • • • ,jp) is a subsequence of (ii, i%, • • • ,4 ) . [This order­
ing also arises from the Bruhat decomposition as follows: Let B de­
note a Borel subgroup of the complex adjoint group of <£, and the 
manifold G/B be given the cell-decomposition U^TTC, where C9 is the 
2?-orbit on G/B of the coset of an element of G whose restriction to 3C 
coincides with the action of <r on 3C. Then G*<T if and only if C* is 
contained in the closure of CT. ] 
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Thus, Conjecture 1 says that 33A, contains a copy of 35AT if and 
only if a^T. Remember that now À is dominant integral. Let us de­
note the dimension of the X-weightspace of the irreducible module 
2)?À, by mT(X). I t follows from Theorem 7, modulo the truth of the 
conjecture, that 

(10) E mT(X) - dim 93A,(X) - P(A, - X). 

Thus for each fixed X, (10) gives | W: l | linear relations among the 
same number of unknowns wT(X), rÇzW. We ought to consider this 
set of unknowns as a function </> on W (with value raT(X) at r ) ; then 
(10) gives the partial-sum function \//(a) = ] C T > * $ ( T ) on W. Thus solv­
ing the linear equation (10) (for each fixed X) amounts to inverting the 
partial-sum operator that sends <j> into \{/. I t is known [3 p. 344] that 
this operator is indeed invertible: </>(K) = ^ C ^ M O ^ ) ^ ^ ) where 
JU(K, T) is the so-called Möbius function of the partial-ordering on W 
defined by the requirement that ]CT><^« M(*> °0 be 1 or 0 according as 
T = K or T9^K. We now conjecture that JU(/C, a) = d e t /co" which is clearly 
equivalent to 

CONJECTURE 2. TT^K implies ]>>>* « det (7 = 0. 

Assuming the truth of this conjecture also, one has, on solving (10), 
the following formula for the weight-multiplicity of 3WAX: 

««(X) = Z det(jw) -P((A + 8)* - X - 8). 

When K is the identity element of W this becomes the multiplicity 
formula of Kostant for the finite-dimensional representation 3WA. It 
is well known that the celebrated character formula of H. Weyl is a 
trivial consequence of Kostant's formula. 

I t may appear that Weyl's character formula has been used in our 
development right a t the first step, i.e., through the known proofs of 
(1)—the theorem of Harish-Chandra. Fortunately, we have been 
able to supply a new and self-contained proof of (1). For this first 
observe that the "if" part of (1) is an easy consequence of (4) a t least 
for integral A; transition from integral to arbitrary A is easy on the 
basis of an (algebraic) continuity argument. The burden of the proof 
of the difficult "only if" part is transferred to the somewhat easier 
theorem of Chevalley which says that the restriction of the G-invari-
ant polynomials on £ to 3C is onto the space of PF-invariant poly­
nomials on JC. An easy and direct proof of Chevalley's theorem is due 
to Kostant and Steinberg. This line of proof of (1) was independently 
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arrived at by K. R. Parthasarathy, R. Ranga Rao and V. S. Vara-
darajan (unpublished). 
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