
STABLE HOMOTOPY CATEGORIES1»2 

BY ALEX HELLER 

Introduction. The Freudenthal suspension theorem implies that the 
set of homotopy classes of continuous maps from one finite complex 
to another is eventually invariant under iterated suspension of the 
complexes. In this "stable range" the set of homotopy classes is also 
well behaved in other ways. For example, it has in a natural way the 
structure of an abelian group. These stable groups of homotopy 
classes form the subject matter of stable homotopy theory. The most 
convenient way to describe them is as the colimit under successive 
suspensions of the set of homotopy classes. This construction, intro­
duced by Spanier and Whitehead [19], gives interesting objects even 
for pairs of spaces for which the hypotheses of the Freudenthal the­
orem fail. 

In this way the stable homotopy category—or rather categories, 
since the class of spaces considered may be chosen in many ways or 
even enlarged to encompass objects, such as spectra, more general 
than spaces—is defined. Stable homotopy categories have been ex­
tensively studied, being the natural loci of such phenomena as the 
S-duality of Spanier and Whitehead (loc. cit.) and the spectral 
sequences of Adams [ l ] . 

In these circumstances Puppe [17] was led to propose an intrinsic 
definition of a stable homotopy category as a category with certain 
additional structure (cf. §9 below). Stable homotopy categories of 
spaces are examples of these objects, but others may be derived from 
algebraic sources, viz. from certain categories of chain complexes. 
The notion has proved useful and has been exploited both in topologi­
cal and in algebraic contexts (Heller [14], Verdier [21 ], Boardman 
[2], etc). 

Freyd is responsible [9] for the observation that Puppe's stable 
homotopy categories are canonically imbedded in abelian categories 
or, more precisely, that categories which admit the additional struc­
ture described by Puppe are so imbedded. The well-developed 
methods of homological algebra can thus be directly applied to the 
study of stable homotopy; Freyd has begun the exploitation of 
these methods [lO], [ l l ] . 

1 An address delivered before the Seventy-third Annual Meeting of the Society 
at Houston on January 26, 1967 by invitation of the Committee to Select Hour 
Speakers for Annual and Summer Meetings; received by the editors July 17, 1967. 

8 This work was in part supported by a grant from the National Science Foundation 
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The dichotomy just observed between the underlying category and 
its additional structure suggests that the terminology of Verdier, 
which distinguishes between a "triangulable" category and its "tri­
angulations," is to be preferred to that of Puppe. Accordingly, the 
"stable categories" of Puppe are referred to below as triangulated 
categories (the word "stable" is itself used in a quite different way, 
cf. §1). 

Although triangulated categories have had fruitful applications 
there is reason to believe that they omit a great deal of important 
information about stable homotopy. One point (which will not be 
discussed below) is that the standard filtrations of homotopy theory 
by skeletons, Postnikov systems, Adams resolutions, and so forth, 
have lost so much structure when looked at in the stable homotopy 
category that all that is left essentially is their associated spectral 
sequences. Another (cf. §17) is that triangulable categories often 
have enormously many triangulations, among which Puppe's axioms 
do not distinguish. 

Verdier (loc. cit.) has discovered a property (the so-called octa­
hedral axiom) of the standard triangulations of stable homotopy 
categories which appears to be independent of Puppe's axioms but 
hardly seems adequate to replace the missing structure. 

In searching for this missing structure one is led to look again at 
the several examples of triangulated categories in order to find a 
common antecedent for the algebraic as well as the topological cases 
providing a uniform rationale for the construction of stable homotopy 
categories and thus providing a point at which to begin the search. 

To fill this role the notion of an h-c-category is proposed here (§3) 
as the appropriate structure in which to do homotopy theory. I t 
should be emphasized that axiomatic homotopy theory, in this sense 
of homotopy theory in an abstract category, is not new, going back at 
least to Kan [lS]. Most of the previous axiomatizations have de­
pended on some sort of a functorial analogue of the product with the 
unit interval (cylinder functor) or the join with a point (cone functor). 
While these seem to deal reasonably well with the topological ex­
amples, they are less adapted to the algebraic ones. In any case the 
present problem seemed to demand a new axiomatization. 

In the one we use here, the additional structure consists not in a 
cylinder or cone functor but in the homotopy relation and the a priori 
choice of the class of cofibrations. This is precisely what is needed to 
write down the Eilenberg-Steenrod axioms (without the dimension 
axiom) for homology theory. I t then appears that the canonical func­
tor from the original category to the Freyd imbedding of the stable 
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homotopy category is not merely a homology theory but the universal 
homology theory of the h-c-category. This universal homology the­
orem (Theorem 10.3 below) asserts, in effect, the inevitability of 
stable homotopy theory. 

The exposition of this argument occupies Chapter I. Chapter II 
contains: first, applications of the universal homology theorem; 
second, a discussion of the relation between triangulations and the 
Toda bracket; third, a computation of the class of triangulations of a 
triangulable category. 

The applications are (§11) a representability theorem for group-
valued homology and cohomology theories analogous to results of 
Brown [3], [4], Whitehead [22] (cf. also Dold [ó]), and (§12) a novel 
proof of a theorem of Dold [5], [ó] on homology theories with values 
in the category of rational vector spaces. These are, so to speak, 0th 
order applications, since they make no explicit use of the standard 
triangulation of the stable homotopy category. 

A first order application (§§13, 14) is to the Toda bracket [20] in 
the form discussed by Spanier [18], The notion of a secondary com­
position can be defined in great generality; the Toda bracket, which 
is defined in any h-c-category, gives an example. I t turns out that the 
stable Toda bracket can be computed from the standard triangula­
tion of the stable homotopy category. 

The computation (§§15—17) of the class of triangulations of a tri­
angulable category justifies the assertion that there are in general 
many triangulations. In particular it is shown that for the stable 
homotopy category of the category of finite complexes the class is 
uncountable. 

Chapter III is devoted to the proof of the relativization theorem 
for h-c-categories which asserts that the cofibrations of an h-c-cate­
gory are the objects of a new h-c-category. For topological spaces it 
would presumably be well known except for the want of a language in 
which to state it. For the case of homological algebra, cf. [12], 

This relativization theorem implies that to each h-c-category is 
associated a sequence of stable homotopy categories. No argument 
will be made here to this effect, but it seems clear that a good deal of 
the missing information in stable homotopy is given by this sequence 
of categories and the functors connecting its terms. The study of this 
structure forms no part of the aims of this paper; it is suggested 
rather that it may be a useful object of further study. 

CHAPTER I 

1. Stable categories. We shall often be concerned below with cate­
gories provided with a functorial endomorphism which, for one reason 
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or another, is called "suspension." I t will be convenient to allow our­
selves to denote suspensions in different categories by the same letter, 
usually 2 , and to adopt the verbal device of calling categories so pro­
vided "categories with suspensions. " 

If <3, & are categories with suspensions, a functor F: e—»©' is 
stable if F 2 = 2/?, and weakly stable if F S ^ S F . 

If 6 has a suspension, a triangle in 6 is a diagram A—>B—>C—>2^1 ; 
a morphism of triangles is a commutative diagram 

A ->B —>C ->2A 

A'-^B'-^C—y^A' 

and the category Tr 6 of triangles in C is defined accordingly. If 
F: e—»e' is a stable functor, it clearly induces a functor Tr C—»Tr 6 ' ; 
if it is weakly stable, it is easy to manufacture, for each isomorphism 
2F~F2, such a functor. 

We shall say that a category (3 with a suspension is stable if the 
suspension is an automorphism of 6. Any category with suspension 
has associated to it a "universal" stable category, by the following 
construction. 

If 6 is a category with suspension, set ob SC = ob GXZ and define 

SC((X, w), ( F , n)) = inj lim e(2k+mX, 2*+»F). 
i 

If ik = ik(X, m, F, n):e(?k+mX, 2*+»F)->se((Z, m), (F , w)) is the 
injection, the composition in S C is defined by 

(ikg)(ikf) = ik(gf), 

k being taken sufficiently large; this is of course independent of the 
several choices. S6 is easily seen to be a category. Its suspension 2 
is given by 2 (X, m) = (X, m + 1) on objects and 24(-X", tn, F, n)f 
= 4- ipT, m + 1, F, n + l)f on morphisms. 

We may define a functor S:e—>S6 by SX=(X, 0) and Sf=i0f; 
we shall identify I G 6 with (X, 0) £SC so that ob e Cob SC. Further, 
we may define an isomorphism <7:52«2»S by crx^ioCZX, 0, X, l ) l sx , 
its inverse being <rfx = io(X, 1, 2 X , 0)1 sx, so 5 is weakly stable. 

The universality of S C is expressed by the following statement. 

PROPOSITION 1.1. If 6, is a stable category, F: Q—>&is weakly stable, 
and 0: .F2«2.F, then there is a unique stable functor G:$Q—>Ct with 
GS=F, Gtr=0. 
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We must define G(X, tn)=2mFX; for/:2*+*A>»2*+»F, we set 
G(i^f)=2™*0 where 

F / * 

commutes, the horizontal arrows being suitable values of 0. 
In virtue of this universality we may refer to SC as the stabilization 

of 6. 

2. Homology theories. The domain of a homology theory is a cate­
gory 6 supplied with certain additional structure, viz. a congruence 
~ , called homotopy, and a collection of sequences X= (X't+Xl+X"). 
I t is convenient to regard these sequences as the objects of a full sub­
category cof G of the appropriate category of diagrams. The functors 
r , T, T" : cof e->C are defined by X *->X', X, X" and the morphisms 
T'!->TL>T" b y X r t " , ^ 

The range of a homology theory will always be taken to be a stable 
abelian category: notice that the suspension in such a category is an 
exact functor. We shall say that a triangle A—>B—>C—>2A is exact 
whenever it is exact not merely as a diagram but also "at A," i.e. 
when 

•. • -* s-^c -~>A->B->C-*2Â->?;B -> • • • 

is exact. 
If 6 is a suitable domain and d is stable abelian, a homology theory 

(h, d) from G to Ofc consists of a functor /*:G—>0fc and a morphism of 
functors d:hT"—*2hT' satisfying the following two conditions: 

HOMOTOPY AXIOM. / ~ g implies hf=hg. 
EXACTNESS AXIOM. If X £ c o f e, then 

htx htx dx 
hT'X—• hTX—• hT"X—• VhTX 

is an exact triangle in G,. 
3 is of course the connecting morphism of the homology theory; we 

shall often use the same symbol for the connecting morphisms of dif­
ferent theories and, elliptically, write h instead of (h, d) for the 
homology theory. 

If h, h' are both homology theories from C to Ct, a morphism of 
homology theories (h, d)~*(hf, d) is a morphism cfrlh-^h' of functors 
such that 
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d 
hT" >2*r 

<t>T" z^r 
h'T' • Z A T 

commutes. The category of such homology theories is defined accord­
ingly. 

The following assertion is self-evident: 

PROPOSITION 2.1. Let h be a homology theory from (3 to Ofc. Suppose 
C' is a suitable domain for a homology theory and that G: G'—»G preserves 
homotopy and takes cof G' into cof G. Then (hG, dG) is again a homology 
theory. Suppose on the other hand that F: d—>G/ is a stable exact functor. 
Then (Fh, Fd) is also a homology theory. 

The latter observation suggests the definition of a universal homol­
ogy theory on a category G, viz. a homology theory h from G to, say, 
ifG, such that for any homology theory h from G to any & there 
exists a stable exact functor F: H<2,-^> d unique up to isomorphism such 
that (h, d)~(Fh, Fd). 

THEOREM 2.2. If G is a small category provided with a congruence =~ 
and a full subcategory cof G of sequences Xf—*X—*X", then there exists 
a universal homology theory on G. 

The functorial character of the value category HQ and the natural -
ity of the homology theory follow immediately. 

We shall not use this theorem below; we thus content ourselves 
with a brief outline of the proof. 

(2.3) If h is a homology theory from G to Œ, then there is a small­
est exact stable subcategory ft' of Ct through which h and 3 factor. 
Call this the subcategory generated by h. All such subcategories have 
cardinality bounded by a cardinal depending only on G. 

(2.4) Thus there is a family of homology theories ha:<S—»<$« 
indexed by a set such that any homology theory is of the form 
(Fha, Fda) with F stable exact. 

(2.5) The functor h*: 6—» XI«^« a n d the morphism â* with projec­
tions ha, da are a homology theory. If the values are restricted to the 
subcategory generated by h*, it becomes universal. 

3. h-c-categories. Since our concern here is with stable homotopy 
we must introduce notions of structure in a category which allow 
us to make enough of the constructions of homotopy theory to re-
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produce the results of Puppe [17] and Freyd [9]. 
We restrict our attention to categories with a 0-object. In such a 

category G, a system of cofibrations is a family of morphisms which we 
regard as the objects of a full subcategory Cof G of the morphism-
category of G satisfying the following conditions: 

(CO) Cof G is replete, contains all morphisms 0—>A and all identity 
morphisms, and is closed under composition. 

(CI) If (A'^A)ECof G and A'£*B' is any morphism, then there 
is a pushout diagram ( = cocartesian square). 

, a" A' >A 

(3.1) ƒ' I I ƒ 

and b" is once more in Cof G. 
In particular, taking 4 ' = 0, we see that G has finite coproducts; 

we use the notation Br\JA. More generally we write B = B'KJA for 
the pushout when there is no confusion possible as to the morphisms 
a", f. We also generalize the matrix notation, familiar for coproducts, 
as follows. If in the diagram 3.1 above filB'—^X and a:A—>X satisfy 
fif^aa", then (/3 a):B'\JA-^X is the unique morphism with 

Taking B' = 0 in 3.1, Al*B becomes the cokernel of a". We call ƒ 
(or sometimes B) the cofibre of the cofibration a" and occasionally 
write A/A' for B. We shall further interpret the statement "A'OL+A 

1+A" is a cofibration" to mean that a11 is a cofibration and a' is its 
cofibre. The full category of diagrams whose objects are cofibrations 
in this sense is cof G. The forgetful functor cof G—»Cof G is of course 
an equivalence of categories. 

A category provided with a system of cofibrations is a z-category. 
It is an h-c-category if it is further provided with a congruence c^t 

called homotopy, satisfying four additional conditions. Before listing 
these we introduce the following terminology. The quotient category 
<3D == G/c^ is the homotopy category of G; a morphism in G is a homo­
topy equivalence if its image in GD is an isomorphism; an object A of 
G is contractible if -4—»0 is a homotopy equivalence. 

The axioms for an h-c-category are the following: 
(HC 1) (Additivity) If f~f:A-+X and gc^g':B-*X, then (f g) 

~ ( f g')\A\/B-*X. 
(HC 2) {Homotopy extension) If (f, ƒ, ƒ") is a morphism in cof C 
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and g'z^f, then there are morphisms gc^f, g"c^f' such that (g', g, g") 
is also a morphism in cof 6. 

(HC 3) {Deformation retraction) If, in the pushout diagram 3.1, the 
morphism a" is a homotopy equivalence as well as a cofibration, then 
so is b". 

(HC 4) {Mapping cylinder) There exists a function which assigns 
to every morphism h in 6 a mapping cylinder, i.e. a factorization 
& = £ƒ w i t h g a homotopy equivalence and ƒ a cofibration. 

The rather stilted form of the last axiom is needed only if we are 
interested in large categories. If (B is small, all that is being asserted is 
the existence of a mapping cylinder for each h. 

Notice that an h-c-category 6, supplied with the additional struc­
ture ox. and cof 6, is an appropriate domain for homology theories. 

4. Some examples of h-c-categories. We list here a variety of 
examples. In no case do we prove that the axioms are satisfied ; indeed 
their assertions are generally either well-known facts or easy exer­
cises. An occasional vagueness is intentional; it is meant to suggest 
that any one of several interpretations would yield an h-c-category. 

(4.1) Let C be a suitable category of well-pointed topological 
spaces, i.e. spaces with basepoints whose inclusion satisfies the 
homotopy extension condition; morphisms are basepoint-preserving 
maps. Cofibrations are maps satisfying the homotopy-extension 
condition, and o^. means homotopy with basepoints fixed. 

(4.2) Fix a group G. Let <B have as objects G-spaces with fixed 
basepoint whose inclusion satisfies the obvious equivariant homo­
topy-extension condition. Morphisms are basepoint-preserving equi­
variant maps. Cofibrations are defined by the equivariant homo­
topy-extension property, and c^. means equivariant homotopy with 
basepoints fixed. 

(4.3) C is the dual of a suitable category of topological spaces with 
basepoints. Homotopy has its usual sense. A cofibration in C is a 
fibration in the category of topological spaces. 

(4.4) Take for C an additive category with a suitable "relative" 
abelian structure (cf. [7], [12]) with enough injectives. Cofibrations 
are proper monomorphisms of the abelian structure. Two morphisms 
are homotopic if their difference can be factored through an injective. 

Categories of chain complexes, such as those considered by Puppe 
[17], are included under this last heading. Suitable categories of 
spectra may also be regarded as h-c-categories. The descriptions are 
more complicated and we omit them as not pertinent to our interests 
here. 
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We shall exhibit below an additional class of examples: the cofibra-
tions in an h-c-category again form an h-c-category. We shall suggest 
indeed that this fact is central to the full understanding of stable 
homotopy. 

5. The suspension functor. In §§5-10 we shall be working with an 
h-c-category C. 

LEMMA 5.1. IfA^Al^A" is a cofibration and A1 is contractible then 
af is a homotopy equivalence. 

For by the homotopy extension axiom it has an endomorphism 
(0, ƒ, ƒ") in cof e with fc~lA, f"c^lA„. But jte" = 0 so that f=ga', 
a'ga'=f'a', a'g—f', and g is thus a homotopy inverse of a'. 

A cone over A is a cofibration A-+CA with CA contractible. The 
mapping cylinder axiom, applied to -4—*0, shows their existence. A 
mapping cone of a cofibration A—>X1->X/A is a pushout CA\JX where 
A—>CA is a cone over A ; its existence is guaranteed by the pushout 
axiom CI as is the fact that CA->CAKJX®$X/A is a cofibration. 
From (5.1) it follows that (0 rj) is a homotopy equivalence. 

LEMMA 5.2. If A'^A^A" and B'^XBI+B" are cofibrations, B is 
contractible, and flA'—^B', then there is a morphism (ƒ', ƒ, ƒ") of the 
cofibrations. If (g', g, g") is another, and g'c^f, then g " ~ / " . 

The first statement follows immediately from the homotopy exten" 
sion axiom applied to the morphism (0, 0, 0) into the cofibration 
B->B->0 since b"f'—0-

For the second we may, again in virtue of the homotopy extension 
axiom, assume without loss of generality that f = g'. Now consider 
the commutative diagrams 

/ = «' 

whose existence is guaranteed by the previous argument, and 

(a' 0) (0 a) 

A» I L A U CA' —-4 CA'IA' 

A'-

1 
B' -

—*CA'-^-+CA'/A' 

—+ CB' » CB'/B', 

f" 
(b'0) 

fKJh h 

B" i B U CB' — A CB'/B', *_M„*„* 
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as well as the similar one with g", g\Jh substituted for/" , f\Jh. If we 
project these into e D and indicate the homotopy class of a morphism 
by the same expression as the morphism itself, then (0 /3) is an iso­
morphism and ƒ" = (&' 0)(0 f$)~lh(0 a)=g". 

PROPOSITION 5.3. For each A<E® let A—>CA be a cone over A with 
cofibre 2-4. Then a functor 2:C a—»eD is defined by the condition that 
for any 0 G C D ( ^ , B) there be a morphism (ƒ', ƒ, ƒ") of A-+CA-&A 
into B->CB-*LB such that ƒ'£<£, / " G 2 0 . If {A-+C A-&'A] is 
another family of cones, then the functors 2 , 2 ' are canonically iso­
morphic. 

We shall speak of any one of these 2 as the suspension functor in CD. 
We shall see that any homology theory on C is weakly stable with 

respect to this suspension. Suppose (h, d) is a homology theory from 
6 to a stable abelian category (B. Since 0—»0—>0 is a cofibration, 
h0 = 0 and thus h vanishes on contractible objects. But for any A £ C 
the cofibration A—>CA—*LA gives an exact sequence hCA—^hEA 
l±LhA-*2ihCA so that dlhZAc^ZhA. The inverse isomorphism we 
may write 0A^hA—>hEA. But by the homotopy axiom h factors 
through CD. If we write e—»CDÀ(B for the factorization we have 
proved the following assertion. 

LEMMA 5.4. 0:2/*«Â2 makes It a weakly stable functor h:oP—»(B. 

6. Cylinders. A cylinder over A is a cofibration j = (jo ji) : A\/A 
-+ZA such that jo, i i are homotopic and are homotopy equivalences. 
A morphism p:ZA—>A is a projection of the cylinder if pjo — pji — ^-A» 

PROPOSITION 6.1. Every cylinder has a projection ; any two projections 
are homotopic. Every object has a cylinder. If (j0 ji):A~>ZA is a 
cylinder then /0 , fiiA—>X are homotopic if and only if there is an 
F:ZA-*X such that Fj0=fo, Fji=fi. 

The first assertion follows easily from the homotopy extension 
axiom. The existence of cylinders is guaranteed by the mapping 
cylinder axiom applied to the folding map (1 \):A\JA—>A. For the 
last, let p be a projection. Then f0p:ZA-*X and fop (jo Ji) = (fo fo) 
« (fo fi) by the additivity axiom. The existence of F follows from the 
homotopy extension axiom. 

If (jo j\) lA—^ZA is a cylinder, then j0}ji are cofibrations. I t follows 
immediately from the deformation-retraction axiom that the cofibre 
dA oiji is contractible. But the diagram 
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AVA^ZA 

(10) 

* i 
i 

-*CiA 

is a pushout. Thus &»• is a cone over -4. We may thus construct a 
commutative diagram 

0 • A • A 

Jo h 

(6.2) Ji 
>Z4 >Ci^ 

ko 
A >CQA > 2A 

in which all rows and columns are cofibrations. The morphism 
ZA—+2A is the cofibre of (joji)- With respect to either of the cones 
CiA, 2^4 is of course the suspension of A. 

LEMMA 6.3. If (jo ji):A VA-+ZA and (jó j{):A'\fA'->ZA' are 
cylinders andf0^fi:A—>A', then there is a commutative diagram 

AVA-^LZA 

foVfi 1 

A'VA'^Xz'A 

->2M 

For any such diagram the homotopy class of g is the suspension of 
that of the ƒ* 

Since jY/o—jY/i» the existence of F follows from Proposition 6.1. 
We may use it to construct a morphism of the diagrams (6.2); the 
second conclusion follows immediately. 

As in conventional homotopy theory we shall want to attach 
cylinders end-to-end. If (j0 jx):A\/A->ZA and (jó j{):A\J'A-+Z'A 
are cylinders, we consider the pushout diagrams 

O'o/OVOViO }1 
ZA 

H t 

Z'A * ZA 0 Z'A 
t' 

AVAVAVA 

1 V (1 1) V 1 

AW AW A 

^ZA\J Z'A 

(li') 

(Jojijù 
->ZA @Z'A 
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where we have allowed ourselves to write, in the bottom row of the 
latter, j0 for tj0, ji for tj\~t'ji, and ji for t'j{. By the deformation-
retraction axiom / and /' are homotopy equivalences, thus also jo, ju 
j2; and (j0 ji) -A V'A—>ZA ® Z'A is again a cylinder over A. We define 
analogously cylinders (j0 jz):AVA-*ZA®Z'A®Z"A. 

Starting with a cylinder (JQ ji):A\/A—*ZA, we have the following 
cofibrations: 

A V A-^^UzA >2A 

AV A-^ll*UzA @ZA >2<2M 

A V A >ZA ®ZA @ZA >X™A 

AV A V A ^ ^ Z A @ZA >SiV2i 

A\/ A\J A^l±lÈ>zA @ ZA ®ZA > S 4 V 2 ( 2 ) 4 

AV AV A^^lzA ® ZA ®ZA >V™A V 2 4 , 

where 2(2)A, X(3)A are defined to be the appropriate cofibres. We shall 
want to introduce the following (temporary) notation. If a morphism 
ƒ of the middle terms of any of the cofibrations above induces a 
morphism of cofibrations, we write (ƒ) for the induced morphism on 
the cofibre. For example, if p is a projection of the original cylinder, 
we have 

A V A-^^ZA ®ZA ®ZA >2™A 

l®(lp) (1 ® (1 p)) 

AVA^H ZA®ZA >2&A. 

7. The cogroup structure of 2 . We suppose that we have chosen 
for each i G 6 a cylinder (j0ji):AVA--:>ZA thus defining a suspen­
sion functor S : Ca—»eD. It follows immediately from Lemma 6.3 that 
the morphisms ((1 p)), ({p 1)):S(2)4—>2A are homotopy equiva­
lences. If we allow a morphism in 6 to stand for its image in CD, i.e. 
its homotopy class, we may define ixA-2A-J>2AV'2A in CD as the 
composition 
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Also, (ji jo)'-A\/A—>ZA is again a cylinder with the same cofibre 
HA. Thus by Lemma 6.3 there is an F:ZA-*ZA with Fji=ji-i. The 
homotopy class of (F):'2A—*2A is IA-

THEOREM 7.1. /*:2—»2V2 and i:2—»2 ere natural transformations 
giving to 2 tóe structure of a cogroup. 

The naturality follows from Lemma 6.3. We recall that the latter 
assertion is equivalent to the statement that for each A HA'-^A—* 

"LAyLA, IA'~2A—»2^4 give 2.4 the structure of a cogroup. 
The counit property of /* is the assertion that the composition 

2A2V2i!4l)2 is the identity in eD . But the composition 2<2M 
V&AVLA^A is just <(1 p)). 

For the associativity of ju we consider the following commutative 
diagram, 

2A 
<(P D> 2<2M 

Î 

(1) 

2<2M 

(1> 

{{p i) e i) 

S i V 2 i « 
((P 1) V 1> 

2<3M 

2«>^ V S 4 ' 

<i e (i p)) 

<i> 

2 4 V 2 4 

1 V <1 P)) 

ZA V 2<2M 

1V(D 
(DV1 

• S-4 V Sil V 2 4 • 

It follows from Lemma 6.3 that the morphisms labeled "ca" are 
homotopy equivalences. But the inverse composites (in CD) along 
the outside edges then give (1 V/M)M4 = (M^VI)M^-

The fact that i is an inverse for the comultiplication ju follows from 
the commutativity of the diagram 

<1> 
ZA @ ZA • 2<2M - ^ » 2 4 V 2.4 

HP) «1 F)) (lg) 

ZA -» CoA •ZA 

which implies that (1 IA){1){(P 1)>_1«(1 I)M = 0 in e a . 
Using a well-known result of categorical algebra we deduce the 

following corollary. 

COROLLARY 7.2. 2 J U = M 2 : 2 2 - » 2 2 V 2 2 , 2t = t2:22-»22. These mor­
phisms give to 22 the structure of an abelian cogroup. 
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Since, for each A<E®Q, %A is a cogroup, 6D(S^4, B) is always a 
group. We write these groups additively even when they are not 
commutative. Thus (ƒ g)ixA = ƒ+g, f LA = —ƒ. 

It is often more convenient to work with cones rather than cyl­
inders in defining the suspension functor. The reader will readily 
verify the following computation rules. 

PROPOSITION 7.3. If {A—>ÇAJ!+2A } is a system of cones in e, then 
(a 0), (0 a):CAKJCA—>2iA are homotopy equivalences. The composi­
tions (in eD) (0 a) (a 0)~~\ (a 0)(0 a)"1 are both LA- The composition 
(a a)(0 a)-1 is (1A ^ W Thus MA = ( 1 V ( Q a) (a O ) - 1 ^ a)(0 a)-"1)-
Iff, g:2A-*B, thenf-g=(fa ga)(a 0)~K 

8. Puppe sequences. We parallel here the argument of [16]. Com­
pare also [13], 

If A'^AÏ+A" is a cofibration, then (a' 0):AUCA'-+A" is by 
Lemma 5.1 a homotopy equivalence and A—^AKJCA'^HA' is a 
cofibration. In e D we define h:A"~*LA' as (0 ce) (a' 0)~ l. 

PROPOSITION 8,1. b is a natural transformation between the composi­
tions 

T" Q , 0 T' a S a 
cof e —> e -> e ÖWJ cof e —> e —> e —* e . 

This follows immediately from Lemma 5.2. 
The morphism 8 is the connecting morphism of the cofibration. With 

it we construct the triangle A'—>A"-*A"1&A' in Tr 6D . The full 
replete subcategory of Tr (3D generated by these triangles is h-cof 6; 
its objects are homotopy cofibrations. 

Puppe's theorem on homotopy cofibrations is the following asser­
tion. 

THEOREM 8.2. If A'ù>A!L>An±J£iAt is a homotopy cofibration then 
so is A^A"^2A'l$a"2A. 

Notice that —2a" is defined because "LA' is a cogroup. What we 
must show is that the connecting morphism of the cofibration 
A-+A\JCA'-+LA' is - S a " . If we make 

c! 
A' >CA' >VA' 

j OL 
A ~^U CA > 2 A 
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commute, so that a" represents Sa'', we may construct in C the com­
mutative diagram 

jUl , («0) 
A U CA' - > CA V CA' -—-

AKJCA ,(°«! 

LA 

(Oa') 

"LA' 

(<*0) 

CAVJCA 

"LA. 

The conclusion then follows using Proposition 7.3. 
We record for use below the following easy consequence of the 

homotopy extension axiom. 

LEMMA 8.3. If A'1*A!UA"1>LA' and B'L>Bl>B"l*LB' are 
homotopy cofibrations, ƒ': A'—>B'\ ƒ: A—>B in eD, and b"f=fa", 
then there is a morphism (ƒ', ƒ, ƒ") of the homotopy cofibrations. 

9. Triangulated categories: the stable homotopy category. Since 
6D is provided with a suspension functor 2, we associate with it, as 
in §1, its stabilization seD . In view of Theorem 7.1 and Corollary 7.2 
this is a stable additive category. We shall show further, following 
Puppe [17], that §6° is provided with a "triangulation." This is a 
notion due to Puppe; the terminology is however borrowed from 
Verdier. 

We begin by recalling the definition of a triangulation. If (X is a 
stable additive category a triangulation of Ct is a full replete subcate­
gory A of Tr Cfc satisfying the following axioms : 

(Al) For all ,4 G a, (0-^^L>^->0)GA. 
(A2) {A'^A^A"JL,LAf)^à if and only if (A^A'^LA'^LA) 

GA'. 
(A3) For any a': A-^A" in Ct, there is a triangle A'-+AÏ+A"-*LA' 

in A. 
(A4) If 

A' > A > A" > LA' 

I ' I r 
B' -* B > B'' -»2B' 

commutes and the rows are in A, then there is a n / : A'-*B' such that 
(/*', ƒ, ƒ") is a morphism in A. 



i968] STABLE HOMOTOPY CATEGORIES 43 

Verdier adds an additional axiom, the so called "octahedral axiom," 
which we omit. 

A category (X which admits a triangulation is a triangulable cate­
gory. 

PROPOSITION 9.1 ( P U P P E ) . Let à. be a triangulation of a. Then 
(i) if A'—>A—*A"—i>l£iA' is in A the sequences 

• • • -> a ( - , A9) -> a ( - , A) -> a ( - , 4") ~> a ( - , 2M') -> • • • 
. . . 4 - a(ji', - ) <- a(i*f - ) <- a(ii", - ) <- a(?A'9 - ) < 

are e#ac/; 
(ii) if (ƒ', ƒ, ƒ") is a morphism in A and any two off', ƒ, ƒ" are iso­

morphisms, then so is the third; 
(iii) if A'-^A-*A"->2A', B'->B-*B"-*2B' are in A, then so is 

A'@B'->A®B->A"'®B"->2A''@2B''. 
(iv) Moreover if A, A' are both triangulations of A and A'CA, then 

A'=A. 

For the proof, which is in any case quite easy, we refer to Puppe 
[17]. 

We may now introduce the cofibration-triangulation Acof of SeD . 
We recall that the functor S: eD—»Sea is weakly stable, with an 
isomorphism <r: 5 2 « 2 S . To each homotopy cofibration X'L+X^+X" 
A 2 X ' in e D we associate the triangle SX'8^SX%SX"°J!föSX'. 

The full replete subcategory generated by the triangles A"L+AÜL+A" 
±*ZA' such that for some even integer h 

2 V ' S V 2*a 
S M ' > S M > S M " > 2h+1A' 

is isomorphic to one of these is Ac0f. 

THEOREM 9.2. Acof is a triangulation of SGD. 

Axiom Al is trivially satisfied; A2 follows from Theorem 8.2; A3 
is a consequence of the mapping-cylinder axiom ; and A4 follows from 
Lemma 8.3, after suspension. 

10. The Freyd construction; universal homology of h-c-categories. 
It follows from Proposition 9.1 (i) that in a triangulable category 
every morphism has a weak kernel and a weak cokernel. A result of 
Freyd [9] then asserts that each triangulable category has a universal 
full imbedding in an abelian category. For the sake of completeness 
we outline the relevant construction here. 

If Q is an additive category, we define 3>et= QT*/Vl where CT* is the 
category of morphisms in Ct and 91 is the two-sided ideal consisting of 
morphisms (ƒ',ƒ) in 6T*: 
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(10.1) 

ƒ' 

ƒ 
» B 

such that fa" = 0 ( = &"ƒ). We regard & as a full subcategory of 3>C£ 
via the imbedding .4 —->1A- An endofunctor S of d extends in the obvi­
ous way to $($; if & is stable then so is <£$. 

THEOREM 10.2 (FREYD). If & is triangulable, then $($ is abelian. 
Further $& is Frobenius, i.e. there are both enough infectives ana enough 
projectives, and these classes of objects coincide. The objects of Q consti­
tute both a resolving class of injectives and a resolving class of projectives 
in $®.Ifa triangle in <$ belongs to some triangulation, then it is an exact 
triangle in $d. Finally, any stable functor F: CE—»(B into an abelian 
category (B which, for some triangulation A, takes each triangle in A into 
an exact triangle of (B, extends uniquely (up to isomorphism) to an exact 
functor 3>a—>(B. 

We shall not give the proof (cf. [9, Theorem 3.1]), but the follow­
ing observation may give an adequate idea of how it proceeds. Choose 
some triangulation A of Cfc. Then the kernel, image, and cokernel of 
the morphism (ƒ',ƒ) of (10.1) are indicated in the diagram, 

->A' ->A' r >B' Bf 

-> A 
ƒ 

b"f' b" %b" 

» B >B ->2X, 

where X f U ' ^ S A X is in A. 
Now if G is an h-c-category we write H<2, = $§(5n and let h be the 

composition e ^ e D i > S C D - > f f e . We define d:hT"-^hTf as follows. 
For any X'-->X-*Xn in cof C the connecting morphism 5 gives a 
homotopy-cofibration X'-^X-ÏX'I^X' in 6D . Then, as in §9, 
<rx'(Sô):SX"->2SX' in S6D . Thus d = <TX'(SÔ):hX"->2hX'. 

THEOREM 10.3 (h, d) is the universal homology theory of 6. 

We observe first that (h, d) is a homology theory. The homotopy 
axiom is trivially satisfied. The exactness axiom follows from The­
orem 10.2 if we recall that for a cofibration X'~>X-->X" in (B the 
triangle SX'~+SX~>SX"J+2SX' belongs to ACof. 
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But if (h, d) is any cohomology theory from G to, say, <B, then h 
factors as 6—>eDJ^(B. But by Lemma 5.4, h is weakly stable and thus, 
by Proposition 1.1, factors uniquely through a s table functor F : S Ca--» (B. 
But F takes triangles in Acof into exact triangles in <£ and, by 
Theorem 10.2, extends uniquely to a stable exact functor HQ—»(B. 

CHAPTER II 

11. Representability of group-valued homology theories. In view 
of Theorems 10.2, 10.3 we may use the techniques of homological 
algebra to obtain representability theorems for homology and 
cohomology theories with values in the category ab°° of graded 
abelian groups, supplied with degree-shift as suspension functor. 
We confine ourselves here to a theorem asserting representability-in-
the-limit. I t is possible to obtain stronger results under suitable 
hypotheses involving completeness of the categories and continuity 
of the functors. But these matters do not seem to be well understood 
and we avoid them here. 

We begin with a result in homological algebra which is undoubt­
edly well known. However, for lack of a suitable reference, we outline 
a proof here. 

PROPOSITION 11.1. If Q, is a small abelian category, then any left-
exact ( = kernel-preserving) functor F: Ctop—>ab is a colimit of a directed 
system of representable functors: 

F = inj lim Ct( —, Aa) 

where {Aa, <^:Aa—>An) is a directed system in (X. 

We recall that the category £ of left-exact functors Ctop—>ab is 
abelian and that the representable functors 0t( —, A) form a set of 
small generators. Thus we have an exact sequence 

(11.2) l L * a ( - , i l < ) - > U i a ( - , J B i ) - > F - > 0 

in which the image of each Cfc( —, Ai) lies in a finite coproduct of the 
Ct(—, Bj). We may accordingly deduce from (11.2) the exact sequence 

e 
inj lim Ct( —, Jlieu Ai) -» inj lim a(—, lljev BJ) —> F —>0 

where [/, V run over pairs of finite sets of indices such that for i £ Ut 

the image of <£( —, Ai), is contained in Rjev Ofc( —, Bj). But 
A—»<$( — , 4 ) is a full exact functor from <2 to <C. Thus 0 is induced by 
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0ÜVi llieu Ai—> lLjev Bj. If the kernel of duv is Cuvt we have, since 
inj lim is exact, -F^inj l im^r ($(•—, Cuv). 

We supplement this with the following observation. 

PROPOSITION 11.3. If & is small abelian and Q is a resolving set of 
infectives in a, then any exact functor F: &op—>ab is isomorphic to a 
colimit inj lim ($( — , Xa) with Xa(~Q. 

By (11.2) we may assume ,F = inj lim Cfc( —, A*). For each a we 
choose a short exact sequence 0—>Aa^Xa—>Ba—>0 with XaÇ.Q. Now 
for j8>a consider the diagram 

a(Aa,Aa) 31« 

1 Ï 

a(xa> A8) -> a(Aa, Afi) 3<fo. 

The limit of the second row, with respect to /3, is FXa-+FAa, which is 
surjective. Thus for j8 sufficiently large <£% is in the image of d(Xa, AB) 
—>(Aa, Ap), i.e. $J factors through Xa. 

Now let us choose for each a a sufficiently large b(a)>a and a 
factorization <%a) = PaXa. If we introduce in the index set the stronger 
ordering j8^ ô(a), then, by what we have just proved, the colimit does 
not change. But also the Xa form a directed system under the mor-
phisms 

Pa <P3 A/J 

Xa —» Ai>(a) » AB —> X/5 

and, clearly, jP«inj lim Ct( —, X a ) . 
The reader will readily supply the duals of these results as well as 

the following stable forms of them. If Ct is a stable abelian category, 
we define for A £ Œ the stable representable functor a°°(—, A) : aop—»aô°° 
by ®*(X, A)q=a(X, 2 -*4) . If a is small stable abelian, then any 
stable left exact functor aop-^a&°° is a colimit of stable representable 
functors; a stable exact functor is a colimit of stable representable 
functors <jt00( — , Xa) with the Xa in some stable resolving class of 
injectives. 

If we permit ourselves to define representable homology or cohomol-
ogy theories on an h-c-category by using the obvious extension of 
the same terminology, then we have, as a corollary of the results 
above, the following theorem. 

THEOREM 11.4. If <B is a small h-c-category, then any homology 
(cohomology) theory from 6 to ab00 is a colimit of theories represented by 
an inverse (direct) system in S<BD. 
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12. Rational homology on finite complexes; Dold's theorem. If 
Ct is an additive category and À is a commutative ring, we define the 
category A®0fc by giving it the same objects with the morphisms 
(A®a)U, B)=A®a(A, B), the composition being (X'®/')(X®jO 
= X'X®/'/. Thus ƒ—»1 ®/ defines an additive functor Ct—»A®G. 

A®& is of course more than an additive category; it is (cf [8]) a 
category enriched over the closed category of A-modules or, as we 
shall say, a A-category. The notion of an enriched category is how­
ever sufficiently intuitive in these simple circumstances that we can 
appeal to intuition rather than general theory to pursue it. 

If A is a subring of 0, then A® Ct has the following universal prop­
erties: 

PROPOSITION 12.1. If F:&~^>(R is an additive functor and (B is a 
k-category, then F may be factored as Œ—»A® Ct£̂ (B where F' is a A-
functor; F' is unique up to isomorphism. 

PROPOSITION 12.2. If dis abelian, then so is A ® (X. If (B is an abelian 
Krcategory and the composition Œ—»A®($Ẑ (B is exacts where F1 is a 
A-functor, then F' is exact. 

The application we have in mind is to the category 3 of finite CW-
complexes with basepoint made into an h-c-category as in (4.1). We 
denote by *ü the category of graded vector-spaces over Q which are 
finite dimensional in all degrees and nonzero in finitely many degrees. 
If H is ordinary homology with coefficients Q (reduced homology, of 
course), then H is a homology theory from 3 to V and thus factors 
as 3-*H32!>V with H' stable exact; and further, by Propositions 
12.1, 12.2, H' factors as H3->Q®mElv with H" a stable exact 
0-functor. 

LEMMA 12.3. H" is an equivalence of Q-categories. 

This result belongs to the folklore. We shall not give a proof beyond 
observing that it follows easily by induction on, say, the number of 
cells involved from the fact that the stable homotopy groups of an 
A-sphere are finite in degrees different from h. 

Now if we consider any homology theory on 3 with values in a Q-
category, we see that it must factor through 0®fl r3«eü. But a 
moment's reflection will show that there are very few Q-functors 
on V. We have accordingly the following result. 

THEOREM 12.4 (DOLD). If h is any homology theory on 3 with values 
in a Q-category> then h^hS°®H. 
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Here ® is the "symbolic" tensor product. Since the dual of a Q-
category is once more a Q-category, a similar result holds for coho-
mology. 

13. Secondary composition. Toda (20) defined a "secondary com­
position," now generally called the "Toda bracket," in the category 
of topological spaces. Here we shall define a notion of secondary 
composition in an arbitrary stable additive category. If the category 
is triangulable, we shall exhibit a connection between the triangula­
tions and the secondary compositions. In the succeeding paragraph 
we apply these observations to the original Toda bracket, which we 
define in any h-c-category. 

If Ct is an additive category, we define the secondary domain and 
secondary codomain functors D, D*: (T*X CT*—>ab as, respectively, the 
kernel and the cokernel in the exact sequences 

(13 1) °~* D(J> g) ~* a ( F ' Z) ^ a ( X ' Z) ® a ( F ' W)> 
a(x, z) e a(F, w) ^ a(x, w) -> £>*(ƒ, g) -» o 

where f:X—*T, g:Z-+W, c/>u = (uf, gu) and <f>*(v, w)=gv — wf. The 
images of 0, <j>* are the coindeterminacy and indeterminacy of (ƒ, g). 

If G is a stable additive category a secondary composition in a is a 
morphism Z>—»D*(2X1). The notation for such a morphism at (ƒ, g) 
is u H*[g, u, ƒ] . Since D and D* are additive functors, [g, —, ƒ] is a 
homomorphism. The class of secondary compositions is of course a 
group. 

If. Ci has a triangulation A, we may associate to each sequence 
Xl+Yl^Zl+W with w/ = 0, gu = 0 a commutative diagram 

f M & 

X-^UF—>z-î-> w 
v \ w 

I n I I . I 
u u u 

T >Y >Z >2T 

in which the second row belongs to A. The morphisms v and w axe not 
unique; v has an indeterminacy of the form ÇL~~1u')hy A:X—»2"~1Z 
and w one of the form *(2«") , k:2Y->W. Thus w(2v)Ea(2X, W) 
is defined up to an indeterminacy of the form wu'Çùh)+kL(uf,v) 
= g(2A)+*(2jO. We denote by [g, u, f]A the element of D*(f, g) 
represented by wÇ&v). Naturality follows from standard arguments. 
Thus we have the following result. 
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THEOREM 13.2. A H [ - , —, — ]A maps the class of triangulations 
of a into the class of secondary compositions. Further, a triangle 
A,(L>A!+A"JL?LA' in & belongs to a triangulation A if and only if it is 
exact in 3>a and [a, a', a"]&31 2A'. Thus A I—> [ —, —, — ]A is infective. 

If the triangle belongs to A, the conclusion is clear. Conversely, 
if [a, a', a"]&3l-2A.> then there is a diagram 

B 
b" 

->A- -+A' -*ZA' 

w 

->A ->A" >2B' 

with the second row in A and WÇ2V)~1ZA>- I t follows from the 5-
lemma (in <£<$) that 2», w are inverse isomorphisms, so that the two 
triangles are isomorphic. 

14. The Toda bracket. Let 6 be an h-c-category. If the sequence 
Xl+Yl+Zl+W satisfies guc^O, ufc^O, then there is a commutative 
diagram 

cz 

ex CY 

which determines a morphism (gcf> yf):CXKJCX—>W. If we write 
CXl+ZX for the cofibre of X-^CX, then (£ G)\CX\JCX-&X is a 
homotopy equivalence; and we have, in 6 a , the composition 
(&0 Y / ) ( £ O)"1:!)^—>W. This homotopy class depends on the choices 
of 4> and 7 (though not on ƒ); we denote by {g, u, ƒ} the subset of 
e D (2X, W) so obtained. Following Toda [20 ] or Spanier [18] we 
have the following result. 

LEMMA 14.1. {g, u>f\ depends only on the homotopy classes of g, u,f 
and is a double coset of the subgroups gQDÇ2X, Z), e D ( 2 F , W)ÇSf). 
Further, X{g, u,f}C~{2g, 2« , 2 / } . 

Now in s e D suppose we have a sequence Jc2+TH>2l+ffî with 
£« = 0, uf*=0. We define [g, u,f]Tod&ED*Ç2f, g) as follows. In e there 
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is a sequence XL>Y2L>Z±>W as above such that (%->?->2-*ffi) 
**V*{SX->SY->SZ-*SW). Then [g, ^/]TodâD(-l)m2-*S{g, «, ƒ}. 

THEOREM 14.2. [—,--, — ]Toda is a secondary composition, and in-
deed [—, —, •—]Toda=[ —» — , — JAGO!' 

The first assertion follows immediately from the lemma. The second 
follows from the first and the observation that if AH^Xl+X/A is a 
cofibration in (3 with connecting morphism ôÇ~Çp(X/A, 2A), then 
{8, b, a}3ISA. But if c:X/A—>2A represents 8, then in the diagram 

we may take 0 = 0. 

IS. Infectives of <£0L If (B is an abelian category, we write J(B for 
its full subcategory of injectives. If (B is stable, then so is 7(B. As we 
have seen (Theorem 10.2), if & is triangulable, then a is a full sub­
category of /$(£; and indeed every injective of $Cfc is a retract of some 
A G Q>- It need not be the case that A =ƒ$(£; the following criterion, 
however, is more or less self-evident. 

PROPOSITION 15.1. If <$ is triangulable, then A=I<b® if and only if 
idempotents split in Ct, i.e. if j%\A-+A, / 2 = ƒ implies 

' - G o) 
for some decomposition A=A'®A". 

The following result gives some insight into when this happens. 

PROPOSITION 15.2 (FREYD [l0]). If dis triangulable and has count-
able copowers, then idempotents split so that &=/$($. 

This implies, by a not-completely-trivial argument, the following. 

PROPOSITION 15.3 (FREYD [l0]). If 3 is the category of finite CW-
complexes, then $3D=IH3. 

This serves as a model for other results of a similar character. The 
idea is to imbed in a larger category with copowers (in this case finite 
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dimensional CW-complexes) and then show that the splitting in fact 
takes place in the original category. 

We omit the proofs. 
Our object here is to investigate the class XCfc of triangulations of a 

category <2. We can do this only when Ofc =/<£(£. Thus the following 
observations are relevant. 

LEMMA 15.4. If A is a triangulation of & and 

O 
A'-

a' © 1 „ (a 0) 
» A © X > A" © X-—U HA' 

is in A, then so is A'UA^A"^2A', 

For there is a triangle B'—>A!+A"—*:2B' in A and thus a commuta­
tive diagram 

B' > A > A" >SB' 

f 
'IN 

A' >A © X- A © X-

2 / 

•2,4' 

(10) (10) 

A'- -+ A' ->2M' 

Since the last row is exact in $Ct the 5-lemma implies that it is iso­
morphic to the first one. 

If we define a split triangle as one of the form 

1 © 0 , 0 © 1 „ 1 © 0 „ 
X' © S-1*" > X' © X > X" © X > X" © 2X', 

it is clear that the split triangles belong to every triangulation. 

PROPOSITION 15.5. If Q, is a triangulable category, then every triangu­
lation A of Ct is contained in a unique triangulation A' of / $ « ; and a 
triangle A of I$(& is in A' if and only if f or some split triangle X, 
A®XGA. 

If we show that the A' so defined is a triangulation of J$Ct, then, 
since AT\Tr GL is obviously a triangulation of Cfc, we have by (Proposi-
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tion 9.1(iv)) A~A'P \Tr ft. The uniqueness of A' follows from (Propo­
sition 9.1(iii), (iv)). 

Now A' clearly satisfies axioms Al,2. If A±>A" in I * a , then for 
suitable X, X" there is a triangle W-*A®Xa!®?A"@X"-»2W in A. 
But X is projective and X" is injective. Thus the split triangle 
2~lX" ®X->X-+X"\X" @2X can be split off, leaving a triangle 
A'-*A!UA"-JLA' in A'. 

Finally, if A®X, B@Y are in A, where X, Y are split triangles, 
and f:A—>B, f'\A"—>B" form a commuting square in <£>a, then there 
is a g' : A ' 0 X'-*B' 0 F ' such that (g', ƒ 0 0, ƒ" 0 0) is a morphism in A. 
But then 

(a «i-Q././-) 
is a morphism in A'. 

In particular, if d is triangulable then so is ƒ<£&. I t seems appropri­
ate to extend the use of the term triangulable to stable Frobenuis 
categories (B for which 7(B is triangulable in the primary sense; clearly 
for such categories <3>I(B«(B. In any case, for any triangulable Œ, 

Similarly, we shall speak of triangulations of (B (i.e. of 7(B) and 
write Ï(B for X/(B. 

16. The class of triangulations. We shall now compute the class 
of triangulations of a stable Frobenius category (B. We make the 
preliminary observation that these classes are the same for equivalent 
categories. If F: Gt'—>0t is a stable equivalence of stable additive cate­
gories then AHi?- l (A) gives a bijection ïa^ ïCfc ' . 

Now (B, being a Frobenius category, may be regarded as an h-c-
category as in (4.4), and, since injectives and projectives coincide, 
the suspension functor in (BD, which we shall denote by S to distin­
guish it from the suspension 2 of (B, is an equivalence. Since we may 
replace (B by an equivalent category we may suppose without loss of 
generality that it is possible to choose cones CA*A—>CA in such a 
way that 

CZA = 2CA:2A~>C2A = VCA. 

Now 2 leaves 7(B invariant and thus defines an automorphism, 
which we again denote by 2 , of (B°, I t follows at once from (16.1) that 
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(16.2) SS = 2S on (B 

Both 5 and S extend canonically to ^>(BD = üf(B and the commuta-
tivity continues of course to hold there. 

Since we have chosen cones in (B we have for each i G ( B a standard 
injectiveresolution Â = (CA~>CSA~*CS2A-> • • • ), with Z«Â~S«A. 
Suppose also that A occurs as the image of X " in the exact triangle 
of injectives 

X = (X' 
x" x' 

—> X — • X" •SX' ) . 

Then we may construct another injective resolution 

* x x 
£== (X->X"~»SX' 

- Hx" - S x ' 
> S X > S X " • • ) . 

Here Z 3 j £ = 2 4 . By the usual comparison theorem of homological 
algebra there is a unique chain-homotopy class of morphisms LA ' Xi—^A 
over 1A, and ZHA determines a unique injective-homotopy-class 
SxÇz(&nÇ2A, S*A) which is in fact an isomorphism in (BD. 

Now suppose A is a triangulation of (B. Then every A appears as 
the image of x" for some X £ A . If it is also, similarly, the image of 
w" in a triangle W £ A , then there is a morphism X—>W of triangles 
which gives the identity on A and thus also on 2.4 • I t follows that 
8w=zöx, and we have accordingly a morphism 5(A)A'2A —>SSA in (Ba. 
From the comparison theorem, once more we see easily that S (A) is 
natural, i.e. 8(A) : 2 « 5 3 . 

LEMMA 16.3. For any triangulation A of (B, S(A)5+5S(A) = 0. 

We may, for any A £ (B, choose a triangle X as above with A the 
image of x" and A—>X the cone A—>CA. We then have a commuta­
tive diagram 

A 

CA 

>SA 

SA 

X" • 

i 
•GSM-

SX ' —> 2 4 

GSM S 84 

S X 

-> GS84 

S54 

S 4 4 . 

By axiom A2 we may identify <j> as 5(A)SA- But since XCA = CZA it is 
also -SS(Ù)A. 

THEOREM 16,4. Z7*e operation Ô gwes a bijective correspondence be-
tween triangulations of <B and isomorphisms 2—»53 ew (B wMcfe a#Ji-
commute with S. 
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It will be sufficient to prove the following assertion: if 0:S « £ 3 anti-
commutes with 5, then the class A of exact triangles 

0 0 % % 

X = (X' —> X —> X" —> SX') 

of injectives such that dx' = 0imx" is a triangulation of (B. 
Axiom Al is trivially satisfied; axiom A2 follows by reversing the 

argument of Lemma 16.3. For A3, suppose X'lL>X and let B'—*X' 
-*A—:>X-*B indicate the kernel, image, and cokernel. Then we have 
in (B commutative diagrams 

X -> B S £ ' • SX ' -» Si4 

4f OA 

->CA >SA S2A > CS2A ->5M 

since CA is injective and SX' is projective. Moreover <j> and $' are 
isomorphisms in (Ba. Thus there is an exact sequence 0—»5—>X" 
~>SJ3'->0 with a morphism (<£, \f/, 4>') into 0->SA->CSA-->S2A->0. 
Since <£, 0' are isomorphisms modulo injectives, so also is ^, i.e. X" 
is injective. But then the triangle X1—»X—>X"—»SX' is in A. 

Finally, suppose that X and y are in A, that /:X'—»F', /:X—»F, 
and that fx" = y"f. If we write -4, 5 for the images of #", y , there is 
certainly a commutative diagram 

X' -»X- -»X"- ->SX' 
Sa 

->S.4 

ƒ 

F'-—> B -> F 

r 
-> F" 

S/3 

- > S F ' — > s £ . 

But ôy^= (S8<j>)ôx in (BD because of the naturality of 6 and the fact 
that, for <£: A—^B covering $, Z2$ = Ss<t>. Thus ^ ~ S $ ; we may in fact 
suppose i^=S0. But (S]3)(g-S/') ==S(tf>a--j8f) = 0 so that S/' = £+?/* 
for some A:SX'—»F", SX' being projective as well as injective. But 
then (f',f,f'+hx) is a morphism of triangles. 

If (B is triangulable, then the group consisting of those automor­
phisms of S which commute with S operates freely and transitively, 
by composition, on the set of isomorphisms S «S 3 which anticommute 
with 5 and thus, by the theorem just proved, on T(B. Since S is an 
automorphism of (BD which commutes with S we deduce immediately 
the following result. 
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COROLLARY 16.5. The group consisting of those automorphisms of the 
identity functor of H(& which commute with S operates freely and 
transitively on Ï(B. 

17. An example: triangulations of HT. We shall not compute the 
class T2f3 of triangulations of if 3 (which by Proposition 15.3 coin­
cides with ÏS3D) but shall content ourselves with showing that there 
are uncountably many of them. By Corollary 16.5 this can be done 
by showing that the group of those automorphisms of H23 = HH3 
which commute with the suspension S has an uncountable subgroup. 

An additive category d is a torsion category if each object A is a 
torsion object, i.e. one such that for some integer h, h-lA = 0. 

L E M M A 17.1. JET23 is a torsion category. 

I t is of course sufficient to show that (H3)D is a torsion category. 
Since 2 is an automorphism of fl"3 it is in fact sufficient to show that 
for any morphism f:X~>Y in 3 the corresponding object of (H3)D is 
a torsion object, i.e. that for some h the morphism 

A-lx 
X >X 

f f 
h-lY 

Y • Y 

factors t h r o u g h an injective. As in §12, let H deno te ord inary homol­
ogy wi th ra t iona l coefficients. T h e n i t follows from L e m m a 12.3 t h a t 

(i) If w:X-*Y in S3 G and Hw = 0, t hen , for some n = l , 2, • • • , 
rae/ = 0. 

(ii) T h e r e is a g: Y—>X and an m = l , 2, • • • such t h a t Hifgf) 
= tnHf. 

But this implies that for a suitable positive integer n the morphism 
(ngf, nfg) is the same as (mn-\x, mn-ly) and thus has the factoriza­
tion 

x-^Ux—>x 

f 
i 

ƒ 

nf 
-> Y 

Now any torsion category 6 in which idempotents split is the co-
product of its ^-primary subcategories, i.e. the full subcategories dp 
of objects annihilated by some power of the prime p. In particular 
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H23 = TTp(H
23)p. Such ^-primary subcategories are of course stable 

under automorphisms of the category. Thus the group G of those 
automorphisms of the identity functor of if23 which commute with 
S is TlpGp, where Gp is the corresponding group for (H23)P. 

But in a ^-primary torsion category multiplication by any unit of 
the ring Zp* of £-adic integers is clearly an automorphism of the iden­
tity functor and certainly commutes with any additive endofunctor. 
This defines a homomorphism from the group uZ% of such units into 
Gp. The example of the Moore-spaces corresponding to the groups 
Z/pkZ shows that this is a monomorphism. 

THEOREM 17.2. TTpw(Z*) operates freely on ï i ? 3 . 

CHAPTER III 

18. Cofibrations in Cof 6. If (C, Cof e) is a c-category, so that 
Cof C is a system of cofibrations in G, i.e. a full subcategory of Q~* 
satisfying axioms (CO), (CI) of §3, we define a full subcategory 
Cof2 eC(Cof e)"* as follows. Suppose (ƒ',ƒ) is a morphism in Cof ©, 

ƒ' 
A'— ->B' 

a" I I b " 

A-^-»B. 

Then the pushout A^JB' exists, and (ƒ b"):A\JB'->B. Cof2 C con­
tains as objects those (ƒ',ƒ) for which ƒ and (f b") are in Cof 6. I t fol­
lows of course that ƒ is also in Cof C if (ƒ',ƒ) is in Cof2 C 

PROPOSITION 18.1. Cof2 e is a system of cofibrations in Cof 6. 

For axiom (CO) we need only check closure under composition. 
Suppose also (g', g) G Cof2 6, so that we have a commutative diagram 

Af——> B' —^—> C' 

a" I 

A 

igc") 

f^g' 
-» A \J B' -* A\JC 

B >B\JC' 

C. 
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Here / U l is the pushout of (f b") and is thus a cofibration. But 
(g C')(fKJl) = (gf c"):AVC'->C so that (g'f, gf)ECoi> e. 

To verify (CI) suppose as above that (ƒ', / )£Cof 2 e and that 
(g', g):a"—*c" is any morphism. Then we may construct the pushouts 
C\JBf

y CUB, and it is easy to see that the diagram 

-CKJB 

regarded as a square in CT4 is a pushout. We must show that c"Ub" 
is a cofibration and that (£', &)ECof2 e. 

But it is easy to see that, as pushouts, CU{C'UB') = CUB'. Mak­
ing this identification, (k c"Ub") becomes (k b"), and the square 

AU B , < / 0 B 

fUl 
(k b") 

C\J B' ~ ^ CUB 

is a pushout. Since CUB,c^XCUBf is itself a pushout of c", (k b") 
• ( c " U l ) = c " U 5 " G C o f e, and the conclusion follows. 

We may now iterate this construction: if (6, Cof (5) is a c-category, 
we set Cof0 e = e, Cofw+1 e = Cof (Cofn 6). Then (Cofn e, Cofw+1 e) is a 
c-category for w == 0, 1, • • • . 

19. Homotopies in Cof 6. We suppose now that (6, Cof 6, ~ ) 
is an h-c-category. We shall define a homotopy relation in Cof e by 
introducing the notion of a cylinder over an object of Cof 6; in other 
words we shall copy the "topological" definition of the homotopy 
relation (compare §6). 

If a"\A'—>A is an object of Cof 6, a cylinder over a" is a cofibration 
(£'» Ç)"-a"\/a"—>x" in Cof 6 such that there exists a morphism 
(I'» I) *x"-->a" with the properties that (i) both | ' and | are homotopy 
equivalences, (ii) (|', £)(£', £) = (l0"la")- Such a morphism is a projec­
tion of the cylinder. 
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The following lemmas are needed in order to define the homotopy 
relation. 

LEMMA 19.1. If (ƒ',ƒ): a"—>&" is a morphism in Cof 6, then it has a 
factorization 

(«',«) „0?',/?) 
-»*" *V' 

such that (a', a) is a cofibration in Cof Q and both /3' and j8 are homotopy 
equivalences. 

Let A'^X%B' be a mapping cylinder for ƒ'. Then the pushout 
A\JXf is mapped by (ƒ &"j(3') to B. This in turn has a mapping cyl­
inder A\JX'—>X£+B. We need only let x", a be, respectively, the 
compositions X'-+AUX'-+X and A->AVX'->X. 

COROLLARY 19.2. Every a"£Cof C has a cylinder. 

LEMMA 19.3. If (f, f):a"-*b" is a cofibration in Cof e and both f 
and f are homotopy equivalences, then (ƒ',ƒ) has a retraction, i.e. a left-
inverse {r1, r)\b"—*a". 

In the diagram 

A'JL B' 

-*A\JB , (/*"> 
• S , 

u, as a pushout of ƒ', is a homotopy equivalence. Since (ƒ &")^ =ƒ, 
(ƒ b") is also a homotopy equivalence. Thus ƒ' and (ƒ b"), being 
cofibrations in 6, have retractions r', s. Then r = ( l ƒ')$ gives the 
retraction (r', r) of (ƒ',ƒ). 

LEMMA 19.4. /ƒ (£', ^ l ^ V ^ ^ ^ , <md (rjf, rj):b"\/b"-*y" are 
cylinders, and if', f):a"—>b" is an^ morphism, then there is a 
fe', «) : * " - > / ' wcA / t o (g'$'f go = foy, );ƒ). 

Let us choose first projections (£', | ) , (*}', *}) for the two cylinders. 
Now notice that %"\Jy"\X'\JY'-*X\JY is a pushout in Cof 6, so 
that all the morphisms in 

(tf t) 
a V » > » 

W(f'Vf'),v(fVf)) 

x"\Jy" 
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are in Cof2 6. Using Lemma 19.1 we construct a factorization 

%» \J y» _* Z» lll5i b" 

of ((ƒ£',ƒ£)• 0?'» *?))• Let us write (p', p)iy"-*z" for the composition 
y"—*x"\Jyn—*z". Since we have a commutative diagram 

a" V a" • %" > *" U y " 

y/ y J" > y" —à s", 
it will be sufficient to show that (p', p) has a left inverse (A', X). 

But (p', p) is in Cof2 6 and both p' and p are homotopy equiva­
lences. Thus the conclusion follows from Lemma 19.3. 

LEMMA 19.5. If ((£0' £1 ), (£o £i)):a"VV'-~>tf'' « a cylinder over a", 
then so are ( ( # tf), (fi £o)) and (&>' & ) , «o & ) ) : a " V a " - * * " 0 * " , 
where x" @x":X'@X'-*X@X is defined as in §6. 

We may now, finally, define the homotopy relation ~ i in Cof 6. 
If (fi,fo), (f{,fi):o"-+b"9 then (fi, fo)c*i(f{, fi) if for any cylinder 
(£', Ç) :a"Va"->*" there exists a (g', g) :*"->&" such that (g'f, gö 
= ((fo'/i'), OWi)). 

PROPOSITION 19.6. c^i is a congruence in Cof e. 

I t follows immediately from Lemma 19.4 that if (g', g) exists for 
one cylinder, then it exists for all. Thus Lemma 19.5 implies that c^i 
is an equivalence relation. Finally, Lemma 19.4 again shows that it 
is indeed a congruence. 

20. Cof C as an h-c-category. We shall prove the following state­
ment. 

THEOREM 20.1. If (6, Cof C, £*) is an h-c-category, then so also is 
(Cof e, Cof2 e, ~ i ) . 

The proof will be preceded by several lemmas. 

LEMMA 20.2. If the diagram 

, a" a' 
A' > A > A' 

f ƒ ƒ" 
b" V 

B' • B > B" 
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is a cofibration in Cof G (together with its cofibre) and f, f are homotopy 
equivalences, then f" is also a homotopy equivalence. 

The morphism A—*B'\JA, as the pushout of ƒ', is a homotopy 
equivalence. Since ƒ is the composition A-^B'KJA^B, (b" ƒ) is 
also a homotopy equivalence. But 

(0 a') 
B'U A - -> A" 

Q>"f) 

B -> B" 

is easily seen to be a pushout. Since (a", b") is a cofibration in Cof 6, 
(ô" ƒ) is a cofibration and the conclusion follows. 

LEMMA 20.3. If (ƒ',ƒ) \a"—>b" is a cofibration in Cof 6, then there is 
a commutative diagram 

, v „" <rvr./vn, s„ v s„ yv / .«vJ ,» v e„ 

(20.4) 

(?', Ö 

(I', I) 

0 / , »?) 

(uf, u) 

(f, r) 
(*', v) 

(ƒ',ƒ) 

o?', «) 

» b" 

(f, f) 
(s', «) 

-> c" 

5wcA / t o 
(i) the first two columns are cylinders, with their projections, 

(ii) eac^ row is a cofibration, with its cofibre, in Cof <B, 
(iii) the first pair of rows is a cofibration, with its cofibre, in Cof2 G. 
It follows, moreover, that the last column is also a cylinder with its 

projection. 

We begin by constructing the first column (Corollary 19.2) and the 
pushout diagram 

g„Va„(/'v/'>/v/) „ , v , , 

(r, Ö 
(f, t) 

(r', r) 

->x"V(b"Vb"). 
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Next we 

and get 

apply Lemma 19.1 to 

((ƒ'!',ƒ!)(! D): 
a factorization 

x" U (b" V b") 

x" 

Hi 

\J{b" 

0) „ 
>y' 

V b") -

or, « , 
> b 

Notice that (/', /), as a pushout, is a cofibration. Set (g', g) = (B't', dt)> 
(y', v) = (0V, or). The rest of the diagram is obtained by taking the 
appropriate cokernels. In particular, as a cofibre in Cof2 (B, (f' ,f) is 
a cofibration in Cof 6. The final statement follows by applying 
Lemma 20.2 to the diagrams obtained from (20.4) by taking domains 
and ranges of the a", x" etc. 

LEMMA 20.5. If (ƒ', ƒ) :a"—>b" in Cof e a t ó both f and f are homotopy 
equivalences in (5, then (ƒ', ƒ) is a homotopy equivalence in Cof 6. 

We consider first the special case in which (ƒ', ƒ) is a cofibration 
in Cof 6, so that we may construct the diagram (20.4). Under our 
hypotheses all the morphisms f'Vf, fVf, u', u, t', t, 0', 0 are homotopy 
equivalences. By Lemma 19.3, (ƒ',ƒ) has a retraction (r', r) and (0', 0) 
has a retraction (p', p). We define (w', w):y"—*b" as the composition 

„ (P',P\ „ . , ,.,,. . A„, ((ft',fl)((l,V(fr',fr))) 
y'f » #" \j ( j " \y #") > b"t 

Then (w ' , w)fo' , y) = ((1, 1)( /V, / r ) ) so that (1, l ) ^ i ( f V , / r ) . 
In general, taking a cylinder (f, Ö = ((?o' tf ), (Éo &)):<*" V a " - w " , 

we consider the diagram 

„ tto', fo) „ (£', Ö „ 

(ƒ',ƒ) ! * 

(M£i ' ,&)) 

(ƒ', ƒ) V 1 

J" • J" U *" < b" V a" 

in which the left-hand square is a pushout. By the special case just 
considered \f/ is a homotopy equivalence. But the right-hand square 
is also a pushout. Thus <£(£/, £i), which is the composition a"—*b"\/an 

- » J / ; W , is a cofibration and thus a homotopy equivalence. Since 
<£(£/, Ç1)cu10(fo,

> £o), this completes the proof. 
We may now proceed to the proof of the theorem. We must show 

that (Cof e, Cof2 6, ~ i ) satisfies (HC 1-4). The additivity axiom 
(HC 1) follows immediately from the fact that if a"\/an—*xn and 
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ô"VJ6"-*y" are cylinders, then so is (a"\/V')\/(a"\/b")-*x"\/y". 
Axiom (HC 3), deformation-retraction, is an immediate consequence 
of Lemma 20.5. The mapping cylinder axiom, HC 4, follows at once 
from Lemmas 19.1 and 20.5. 

There remains only the homotopy extension axiom. Suppose 

(u', u) (*', v) (w', w) 

-+5" 
Q',7) (f',f) *e" 

commutes, the rows being cofibrations in Cof Q, and that (u{, u{) 
^ i (w ' , u). We may construct the diagram (20.4) and the pushouts 

(ƒ',ƒ) 
b" 

(ƒ',ƒ) 
b" 

(£o',£o) 

* 
*%"\Jb" x"KJb"- -*x"\J(b"Vb"). 

We see that &"-->x"U&" is a homotopy equivalence and that the 
composition x"\Jb"-*x"\J(b"\/b"){e^y" is both a cofibration and 
a homotopy equivalence, its composition with bn—>x"\Jb" being 
0?o , ?7o)-

Now since (u{t Ui)c^i(u', u), there is an (a', a)\x"—:>â" giving this 
homotopy. This defines ((/W, fa)(v\ z;)):x"U&"—»5" which by the 
previous remark extends to (&', ̂ )\y,f-^ln and gives a commutative 
diagram 

->z" 

(«', cc) 

>5" 

(7', 7) 

We set (v{, Vi) = (j3', /3) (771, rji) and (wi, wi) = (7', 7) (£/, £1) ; our con­
clusion then follows from Lemma 20.3. 

We may of course use this result to iterate the construction. If 
(<B, Cof 6, c^) is an h-c-category we define ^ 0 = —, ^n+i = (^n)i and 
get the following corollary to Theorem 20.1. 

COROLLARY 20.6. If (6, Cof e, £*) is aw h-c-category, then so also is 
(Cof* e, Cofn+1 e, c*n) for w = 0, 1, 2, • • • . 
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