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1. Introduction. The main result of this paper establishes the
existence of solutions of certain nonlinear two point boundary value
problems for a class of nonlinear second order differential equations.

A corollary to the main theorem includes a boundary value problem
recently considered by Herbert B. Keller [1] and Klaus Schmitt [2].

2. Definitions. In the following definitions let S stand for a point
set in the YZ-plane.
A={S: Sisan arc},
Hy= 25: (Y1, Z1), (Yg, Zz)ES=>(Y1— I/z)(Z],—Zz) =05,
Hy=1{S: (Y1, Z1), (Y, Z:) ES=(V1—Y3)(Z1—2Z,) 204,
Ji={S:v3 (¥, 2)ESDZ=N},
Jo=1{S:va (¥, 2)ESDY—-Z=N},
R={(X, YV, 2): XhisX =Xy, | Y| +|Z| < =},
Bo={f(X, Y, Z): fis continuous in R},
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Bi={f(X, Y, 2): 1> Vi=f(X, V1, Z)>f(X, Ys, 2)},
By={f(X, ¥, Z):3 constant KD|f(X, ¥, Z)—f(X, ¥, Z)|
SK|Z1—2,| }

3. The main theorem. Let L, and My be in AN H\N\Jy and let
Ly and M, be in ANHyMN\J,. Let My be bounded above by Ly let M, be
bounded above and to the right by Ls, in the sense that there are no points
(Y, Zu)EMyand (Y1, Zp)ELy such that Yuu> Y and Zyu>2Z 1. Let
P, be a connected set in the region of the YZ-plane bounded by Ly and M,
and let Py be a connected set in the region of the YZ-plane bounded by
L; and M,. Let P EJy, let Py J2 and let one of the sets Py and P, be
closed.

TueoreM. If F,(X, Y, Z), F(X, Y, Z), and f(X, Y, Z) are in B,,
F, and Fyare in BiN\By, and F,(X, Y, 2)>f(X, Y, Z)>F(X, Y, Z)
for all (X, Y, Z)ER, then there is a y(X)EC?[X1, Xa] such that
¥'(X) =f(X, y(X), ¥'(X)) for all XE[X1, Xs], ((X0),y'(X1))EPy
and (y(Xa), ¥'(X2)) EPs.

The proof, which will be given in detail elsewhere, utilizes proper-
ties of solution funnels of continuous differential equations, developed
by H. Kneser [3] and M. Fukuhara [4], and existence theorems for a
more restricted class of boundary value problems by M. Lees [5] and
J. W. Bebernes [6].

The significance of the theorem is as follows: the function
f(X, Y, Z) in the differential equation need not be locally smooth in
Z (i.e., no Lipschitz condition is imposed), nor need f(X, ¥, Z) be
nondecreasing in Y; the nonlinear boundary sets Py and P, are quite
general, and in particular need not be differentiable curves.
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