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1. Introduction and description of method. The known discrete 
variable methods for the solutions of differential equations (see [l]) 
furnish the approximate solutions as discrete tabular values at usu­
ally equidistant values of the independent variable. The object of 
this paper is to search for approximate solutions in the form of a 
spline function S(x)y [4], of degree m ( w ^ 2 ) and class Cm~l. This 
approach was suggested to the authors by I. J. Schoenberg [3]. 

Let the differential equation be 

(1) ƒ = ƒ0 ,30 , 0 ^ ^ , 

about which we assume the following. If r = {(x, y) | 0 Soc S b}, then 
we assume that ƒ(#, j i J g O " 2 in T and that it satisfies the Lipschitz 
condition 

(2) | ƒ(*, y) - ƒ(*, y*)\ ^L\y-y*\ HO^x^b. 

If tn^3 then (2) is equivalent to the boundedness of df/dy in T. 
Our construction of the approximate solution S(x)—Sm(x) is as 

follows. Let y(x) be the solution of (1) determined by the initial value 
y(0)=yo. Let n be an integer >mt h = b/n and let S(x) (O^x^b) 
be a spline function of degree tn, class Cm~l and having its knots at 
the points x — h, 2h, • • • , (n — l)h. 

We define the first component of S(pc) =Sm(x) by 

1 
S(x) = y(0) + / (O)* + • • • + y<—D(0)*»-i 

(m — 1) ! 
(3) \ 

H a0x
m (0 ^ x ^ h) 

ml 
with the last coefficient a0 as yet undetermined. We now determine 
<z0 by requiring that S(x) should satisfy (1) for x = h. This gives the 
equation 

(4) S'(k)=f(h,S(k)) 

1 Supported in part by the National Science Foundation under Grant GP-6070. 
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to be solved for a0. In terms of % — aohmr-1(l--m)\ it is seen that (4) is 
an equation in £ which is conveniently solved by iteration. 

The polynomial (3) being determined, repeat the same steps in 
the interval [h, 2h] : we define 

m-i i y 
(5) S(x) = X) — SM (*)(* -hy + — ax(x ~-h)>* (h g x £ 2A) 

„«o v\ ml 

and determine a\ such as to satisfy the equation 

S'(2ft) =f(2h,S(2h)). 

Continuing in like manner we evidently obtain a spline function 
Sm(x) satisfying the equation 

(6) Sm' (vh) = ffyh, Sm(vh)) (v « 0, 1, • • • , n). 

THEOREM 1. If h<m/L then the spline function Sm{x) exists and 
is uniquely defined by the above construction. 

2. The consistency relation for a spline function. Let S denote the 
class of spline functions in [0, b], of degree tn, class Cm~l with knots 
xv — vh (v = l, • • - , ft — 1). Let s(x)&. If restricted to the interval 
[0, (ni — l)h], s(x) depends on (w + l) + (m — 2) =2ra —1 linear 
parameters. I t follows that the 2m quantities, 

s(vh)y s'(vh) (v » o, 1, • • • , m — 1), 

cannot be linearly independent. In fact there is a unique linear rela­
tion between them (Schoenberg [3]), namely 

m—l m—1 . 

(7) £ a?\{vh) = 4 1 b™s'(vh) 

whose coefficients may be described as follows: writing 

1 m ' /fft\ i 

(8) G.(«) = -—— z ( - D' ( . ) (* - «or, 
(w — 1)! <_o \ * / 

which is a 5-spline (see [4] and [S]), we have 

a™ = (m - 1) !(e„(iO - Öm(v + 1)), 

( 9 ) b™ = (m-l)\Qm+l(y+l). 

From (8) and (9) we easily obtain the numerical values of Table 1. 
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(m) (m) 
av bv 

2 — 1 1 1/2 1/2 

3 - 1 0 1 1 / 3 4 / 3 1/3 

4 - 1 - 3 3 1 1/4 11/4 11/4 1/4 

5 1 - 1 - 1 0 0 10 1 1 1 / 5 26/5 66/5 26/5 1/5 

TABLE 1. 

THEOREM 2. The values Sm(vh) (v = 0, 1, • • • , n) obtained in §1 are 
precisely the values furnished by the discrete multistep method described 
by the recurrence relation 

m— 1 m—1 

(10) Yi, a™ y*-m+i+» = h^b? yi-m.i+9 (A = w — 1, • • • , n) 

if we use the starting values 

(11) yo = S«(0), yi = Sm(A), • • • , ym_2 = Sm((m - 2)A). 

Notice that our integration method, which appears as a one-step 
method in §1, according to Theorem 2 furnishes also some of the 
solutions of the (m — l)-step method (10). 

3. Quadratic spline functions and the trapezoidal rule. If we con­
sult Table 1 and apply Theorem 2 for m = 2, we find the correspond­
ing 1-step method to be 

Vk - y*-i = (*/2)(y*'-x + y*') = (A/2) tf(**_i, y^x) + ƒ(**, y*)), 

which is the trapezoidal rule. Thus by Theorem 2 the trapezoidal 
rule will give the same discrete solution 52(vh) as the quadratic spline 
method described in §1 for m = 2. 

THEOREM 3. Iff(x, y) G C2 in T, then a constant K can be determined 
such that for all h<2/L 

| St(x) - y(x) | < Kh\ | S{ (*) - y'(x) \ < Kh\ 

I •«'(*)-y"(*) I <Kh, 
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if ^ G [ 0 , b]t provided we define the value of the step function S{' (x) 
at a knot xv by the usual arithmetic mean. 

4. Cubic spline functions and the Milne-Simpson method. Again 
from Table 1 we find for m = 3 the recurrence relation 

y* — y*-2 = (A/3)(y*-* + 4y*'_i + y I) 

= (A/3) (ƒ(**_*, yk„2) + 4/0%_i, y*«i) + ƒ(**, y*)) 

which is one way of writing Simpson's rule. Hence, by Theorem 2, the 
Milne-Simpson method will furnish the discrete solution Sz(ph), pro­
vided that we use as starting values y0 and yi = Sz(h). 

THEOREM 4. Iff(x, y) £ Cz in T, then a constant K can be determined 
such that for all h < 3/L 

I Sz(x) - y(x) J < Kh\ I S{ (x) - ƒ(*) I < Kh\ 

I 5/ '(*) - ƒ'(*) I < Kh\ I S3'"(*) - /"(*) J < ZA 

# # £ [ 0 , 6], provided we define the value of the step function Sf
z"{x) 

at a knot xv by the usual arithmetic mean. 

An advantage of our procedure of §1 over the use of the recurrence 
relation (10) is this: the step size A can be changed at each step, if 
necessary, without added complications. This remark adds flexibility 
to our version (§1, m = 3) of the Milne-Simpson method. 

5. Higher degree spline functions and unstable multistep methods. 

THEOREM 5. The solutions Sm(x) are unstable as h—>0for m à 4. 

We may apply known criteria for multistep methods (Dahlquist's 
theorem; see [l, Theorem 5.5, p. 218]) to the relation (10) in order to 
judge the stability of our spline approximation 5m(x). From (9) 
and (10) it appears that the stability depends on the zeros of the 
"associated polynomial" 

m—l m—2 

(12) £ aT x" = (* - 1) (» - 1) I £ Qm(y + 1)*'. 
p«0 v—O 

Using (8) and (12) and the fact that the sum of the roots of a poly­
nomial p(x)—a0+ • • • +an-ix

n~1+anx
n is —a„-i/an, it is easily seen 

that the associated polynomial (12) has at least one root of modulus 
greater than unity for m ^ 4 . Therefore Sm(x) is related by (10) to 
an unstable multistep method. Numerical results, obtained on the 
CDC 1604 at the University of Wisconsin Computing Center, for 
the equation y' ~y, y(0) = 1 for m = 4, 5, 6, 7, show strong divergence. 
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