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The similarity properties of Vol terra operators on Lp[0, l ] having 
reasonably smooth kernels seem to depend entirely on the behavior of 
the kernel as regards zeros and singularities on the diagonal x = y. 

If TQ is a Vol terra operator on Lp[0y l ] , then a study of its similar­
ity properties seems to reduce to the following procedure involving 
the complex kernel G(xy y). 

(1) Classify G(x, x) according to its zeros and singularities on the 
interval 0^§a;?gl. 

(2) Show that To is similar to a unique Tp for Tp a canonical kernel 
of the class of which G(x, y) belongs. 

See [ l ] , [2], and [4] for G(x, y) of order a>0 i.e. 

G(x, y) « (x - y)a-lB(x, y)/T(a) 

with H(x, x)>0 and H(x, y) having certain smoothness properties. 
The canonical form in this case is KJa for 

K = f f [Hit, t)]1/adt 

and 

ƒ«ƒ= f\(x-y)^/T(a))f(y)dy. 
J 0 

See [5] and [ô] for G(x, y) of rank 1, i.e. 

G(x, x) < 0 if 0 âa x < XQ, 

G(x, x) > 0 if #0 < 00 ^ 1, 

G(x0, XQ) == 0. 

The canonical form in this case is kQa,v for unique real k, a, and v 
satisfying O^a, p ^ l , 0<k 

1 This research was supported in part by an N.S.F. Cooperative Fellowship at 
New York University from 10/64 to 6/66 and in part by the U. S. Atomic Energy 
Commission at Brookhaven National Laboratory. 
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(1) f G(t, t)dt = k f (x- a)dx = k/2(l - 2a), 
J o J o 

(2) j G(/, 0 * = * I (* - *)<** = */2(l - a)\ 

(3) G»(«o, tfo)/(G«(*o, #o) + Gy(*o, *o)) = v, 

and 

».p/ ==: I (x - a. 
J o 

)'(f - ay-'f(f)dt. 

These canonical forms are unique in a sense made precise in [4], 
[5], [7] and [8]. 

The important and delicate part of the previous work involved 
solving an equation of the form 

(1) Qa,vTr(B) — Tr(B)Qa,v = TB 

for the kernel T(B). 
This is equivalent to an integral equation 

(2) f [(* - a)'(f - ay~>T(t, y) - T(x, t){t - a)'(y - a ) 1 " ' ] * 
J y 

= B(*, y). 

Dupras, in his doctoral thesis [ l ] , solved the commutator equation 

(3) J« * r<«>(£) - r<«>(£) * /« = J5 for all a > 0 

using a certain contour integral. He obtained the result 

(4) r<«>(B) = f V , y)*r - (l/«) f V - y, /) J/ + £„(*, y) 
" 0 «^ 0 

for 

(5) ((» _ y - „)a/T(a + l))b(fft y)iVt 
0 

(6) R{a)(x, y) is a certain contour integral depending on a. 

Consider the Volterra integral operator 

W ota.a.v.P] = (/[or, oi,o2,-'*,an; »lt • • «.rw; pi, " • ,pn] 

which has the kernel F(x, y) such that 

(8) F{x, y) = ((* - y)~-l/T(a))G(x, y) 
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with 
n 

(9) G(x, x) = YL(x — 0l)*>*, 0 <s ax < a2 • • • < an ^ 1, 

(10) c.(«, x) = ( n (* - «i)p')( E */(* - ^))-

We shall later restrict a, Vj and ƒ>,- in such a way that Q[a, a, v, p ] is 
always a Volterra integral operator. 

Suppose for some complex k, we could get 

(11) kMa/i)SRJ«SsMi = Q[a, a, v,p] 

for Ss~f(S(x)) and Mi = l(x)f(x) both bounded linear invertible 
transformations on Z,p[0, l ] with S^"1(x)=R(x) or 

(12) ku-lJau = Q[a, a, v ,p] . 

I t would then follow that the solution to the commutator equation 

[Qla.m.,j>h 2V«.* ." .PI] = TA 

is 

rz[«.a.rj>] = u-lTr(oi)(uTAu-l)u/k 

or for brevity 

(13) xi«'*»'*i = tr^MiuAv-^u/k. 

In reality, the transformations w and u~l will, in general, not be 
bounded, or for that matter well defined. However, we shall use this 
formalism to obtain candidates for X[a>a>v>p]. In addition, the formal­
ism yields a precise definition of Q[a,a,v,p]. 

The author used this method in [ó] and obtained the canonical 
form for operators of rank one, i.e. the Qa,p = Q[i; a; v; i]. 

The candidate for Xiu ai v] 1] was found and was used to obtain the 
real commutator solution. See [5] and [6] for an exhaustive descrip­
tion of the similarity properties of operators of rank one. 

I t is known that a Volterra operator TH with a reasonably smooth 
kernel H(x, y) commutes with Ja iff H(x, y) =f(x—y). 

Thus we would think 

[TN, Q[a,a,v,p]] = 0 

if 

(14) TN(x, y) = u-lTf^y)u. 
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We may use the operators which commute with Q[ata,v,p] to help 
make J\>>a'v'pl well defined, i.e. 

[Q[oc,a,v,p], Tx[ct,a,v,p] + U~lTf(x—y)U\ = [Q[a,a,v,p], Txla'*'p'Pl\' 

Now we shall ortain the formal expressions for k} S> I, and S~1==R. 

k(R(x) - R(y))'~1B'(y)(j(y)/Kx)) = (* - y)-lG(x, y), 
n 

k[R'(x)]« = G(x, x) => I I (* - <*«)«, 
(,15) i„l 

with 

(16) k = j f f [ (/ - «<)«'«* 1 so that R(l) = 1. 

(It is possible that k = 0. We ignore this difficulty and proceed form-
ally.) 

If we equate x derivatives a t y = x, we obtain 

(17) l(x) - f l (x - 0,)a/*-i/a«>p™, 

G(x, y) = (( ['flit- oà»*dt)/(x - y) Y ' 
(18) V V J ' " 7 ' 

* I I (^ "• at-)
v*+^(1/2a^1/2)(;y ~" a»)"",'*"l"Pt*(1/2a+1/2). 

In order that TF be a Volterra operator, we require 

(19) a è 1, *<(l/2 - l/2o) g v* ̂  ^ ( l / 2 a + 1/2), 0 < f,. 

(This is not the most general case, but is sufficiently general for our 
purposes here.) 

The corresponding commuting operator should be 7V with 

N(x, y) «ƒ(*(*) - R(y))R'(y)l(y)/l(x), 

#(*» V) = ft (* - o,)'*+*«<1'ta-x'»(y - aOw0/ta+1/*>- , ,« 
(20) ,_i a* n \ 
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I t can be shown formally that 

(21) Q[oc,a,v,p] * Q[0,a,v,p] = Q[a+P,a,v,p]. 
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