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1. Let X be a real normed space with norm || ||, T the radial pro-
jection mapping defined by

Tx=w, if|l«] =1, and Tz=a/«, if|s =1

Our concern is with the Lipschitz constant of T'; i.e. with the constant
K such that || Tx—Ty|| S K||lx—yl| for all %, y in X. In particular, we
wish to determine under what conditions on the space X the mapping
T will be nonexpansive, i.e. K=1.

T is a special case of a proximity mapping defined by a convex set
in a normed vector space, i.e. a mapping which assigns to each point
of X, the nearest point of the convex set C. There has been a good
deal of interest in recent years in proximity maps, nonexpansive
mappings, and their interrelations (Moreau, Browder, Petryshyn,
Kirk, De Prima, Lions and Stampacchia, and others). It is easy to
see that if X is an inner product space (and in particular, a Hilbert
space), then T and every proximity map is nonexpansive. More pre-
cisely, Kirk and Smiley [1] proved that X is an inner product space
if and only if for all nonzero x and y in X

=/l = 9/l = 2/l + llolDl = = 9.

For an arbitrary normed space X, Dunkl and Williams [2] have
proved that for all nonzero x, ¥y in X

lla/ll=ll = 31511 = 4/7d1ll + Dl — sl

From this it can be seen that K £2. This bound is the best possible
because it is easily seen that for /;, K =2,

It is of great interest in nonlinear functional analysis to know if
there is a normed space which is not an inner product space and for
which K =1. We prove the following theorem which shows that such
spaces exist only for the trivial case of dimension two.

THEOREM. If X has dimension not less than three, then X is an inner
product space if and only if T is nonexpansive.

If X has dimension two then the nonexpansiveness of T does not imply
that X is an inner product space.

1 The first author was supported by N.S.F. Grant GP-4921, and the second by
N.S.F. Grant GP-3666.
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It is also reasonable to ask about the relation of K to other geo-
metric entities of the space. A discussion of this question will appear
in another paper.

The theorem is split into the following three propositions which
are proved in the sequel.

PROPOSITION 1. T is nonexpansive if and only if X has the following
property

(P) For every ordered pair of nonzero vectors (x, y) such that [|x[|
=|5|| and ”x—)\oyH <||x—Ny|| for all \, it follows that |\o| <1.

ReEMARK. If X has a strictly convex norm and if it has property
(P), then I)\ol <1 if x and y are linearly independent. The proof of
this fact is similar to the second part of the proof of Proposition 1.

PRoOPOSITION 2. If X has dimension not less than three, then X has
property (P) if and only if X is an inner product space.

PROPOSITION 3. X has property (P) if and only if X has the following
property

(J) For every ordered pair of monzero vectors (x, v) such that ||x||
<||e=Ny|| for ali N, it follows that ||y|| < ||y —Nx|| for ali \.

REMARK. Property (J) expresses that orthogonality in the sense of
James [3] is symmetric. Birkhoff [4] discusses property (J) and gives
an example of a 2-dimensional space which has this property but
which is not an inner product space.

2. Corresponding to each ordered pair of nonzero vectors (x, ¥)
we define the real-valued function

o) = o\, 9) =[x —Nyl], —w <A< w.

It follows that ¢ is a convex function, it assumes its minimum value
for X in a finite interval [\, Nz], and it is strictly decreasing (increas-
ing) for A <M (A\>N;). If X has a strictly convex norm, then ¢ is a
strictly convex function and A\;=M\.. In terms of the function ¢, we
may restate property (P) as follows.

(P) For every ordered pair of nonzero vectors (x, ¥), such that
llx|| =|lyll, the function ¢ is strictly decreasing (increasing) for
AS—1 (\21).

Proor oF ProrositioN 1. We first assume that X has property (P)
and prove that T is nonexpansive. It suffices to prove the following
inequalities

M le =9/l s Ml =oll,  forflof] = 1 <]lsl].
@ sl = o/l N = e =sll, for 1 < lol] <ol
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The inequality (1) is a direct consequence of property (P) applied
to the pair (x, ||||/||5]|»). If 1 <||%|| <||y||, an application of property
(P) to the pair (x/||x]], y/”y”) yields

lle/llall = 35l 1 = elall = Al A=D/Is0 N = /Dl = 51,

which implies the inequality (2).
Next we assume that T is nonexpansive and prove that X has
property (P). It is sufficient to consider an ordered pair of vectors

(%, y) such that ||«|| =||y]| =1 because |a|d(; %, y) =0(; ax, ay).
For such a pair, the nonexpansiveness of I" implies

e =3l =z =M
and forallA = 1.

llo + 31l = [l=+ Ml
Since ¢(\; x, ¥) is convex, this shows that ¢ is increasing (decreasing)
for AZ1 (A= —1). To finish the proof we need to show that ¢ is
strictly increasing (strictly decreasing) for A =1 (A< —1). Suppose, on
the contrary, that ¢ is not strictly increasing for A=1. Then there

exists a constant d>1 so that ¢(\; x, ¥) =¢(1, x, y) for 1 SN=d. Let
z=ax+(1—a)y, 0<a<1. Then

o(1; , #/||2l]) = ||l& — 2/|| 4]/
®) =1 —o/|ldhlle — @ = a)/(ldl — 9l
= (1 — o/||4])e((t — @)/ (|2 — @); =, 9),

and
¢(1 + 8; 2, 3/||4)) = ||l= — (1 + &)z/]4]
= (1 — a(l + 8)/||])
fle =@ +8)@ = a)/(dl — A + da)yll
= (1 — a(1 +8)/4
(1 + 81 — a)/(loll — (1 4 8)a); x, 9).

The limit, as a—0, of (1—a)/ (”z” —a)=1. Hence we may choose
a>0 and 6>0 so that

@ 121 —a)/(ldl —a) =4,

and

1S+ —a)/(d = A+ 0e) =d.

Then it follows, from (3), (4) and the assumption that ¢(\; x, ¥) is
constant on the interval [1, ], that
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©) o(1; %, 3/||7])) = A = a/||2)e(1; %, 9),
and
o(1 + 87, 2/||2)) = A — at + 8)/||2De(; =, 9).

Since «, 6 >0, (5) implies that ¢(1; %, z/”z”) >¢p(149; %, z/”z”). This
contradicts property (P) for the pair (x, 2/ HZH), and hence ¢(\; x, )
is strictly increasing for A= 1. Similarly we can show that ¢(\; x, ¥)
is strictly decreasing for A=< —1, and the proof is finished.

3. Proof of Proposition 2, We may assume that X has dimension
three. If X is an inner product space, then it is clear that X has prop-
erty (P). The proof of the converse is based on a characterization of
inner product spaces given by Kakutani [5]. Accordingly it is suffi-
cient to show that for every two dimensional linear subspace ¥ of X
there exists a linear projection P of X onto ¥ which has norm one.
To define such a projection, we choose xy&X, x.6k Y. There exists
$E Y so that ||xo—y|| £||xo—9)|| for all yE V. Let x1=xo—yo. Every
x& X may be uniquely decomposed in the form x=ax;+y, y& V. A
linear projection P, of X onto Y, is then defined by Px=P(ax:+7y)
=4, It remains to show that P has norm one. We consider an arbi-
trary x€X with decomposition x=ax;+y. If y=0, ||Px||=0=]|«|,
hence we assume y#0. From the construction of x; and the decom-
position of x, there follows: ||x—y|| =[x <||axi—Ny|| for all A.
Letting z=(||«||/||%]))y, it follows from this inequality that:
[l — (| 9]]/l|=l)2l| <||x—Az]| for all \. Since ||«|| =|2|| and X has prop-
erty (P), this implies ||y||/||x|| 1. Hence || Px|| <||%||, and the proof
is finished.

4. Proof of Proposition 3. We first assume that X has property
(P) and prove that X has property (J). Suppose, on the contrary,
that there exist nonzero vectors ¥ and y such that ||| <|lx—My|
for all N and such that ||y+M«| <||y]| for some A;>0. Let
m=||y+N\x]|/||7]] <1. The vectors y+Mx and my have equal norms.
Hence property (P) implies that ¢ (1; y+M\x, my) <d(1/m;y+Ax, my).
This inequality implies that ||« — ((m—1)/\)y|| <||«||, which is a con-
tradiction.

To show that if X has property (J) then X has property (P), we
consider an arbitrary pair of nonzero vectors (x, ¥) such that ||%||
=”y” Let [\, \:] be the finite interval on which ¢(\; x, ) achieves
its minimum. We wish to show that —1 M= =1L If Mi=\=0,
we are finished. If not, let Ap5%0 so that Ny SNo=Xa. Let x1=x—N\¢y.
Then Hx1|[ =<__Hx1—)\y[| for all \; and it follows from property (J) that
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l#]l |ly—Ai|| for all A. If in particular we let A= —1/\o, we may
conclude that:

ol = lly = el = |y + A/ — M) = | 1/20] [l4]-

Hence |A¢| =1, and the proof is finished.
We wish to thank Professor W. V. Petryshyn for calling our atten-
tion to this problem.
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