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For iV= 1, 2, 3, • • • we let UN denote the Cartesian product of N 
copies of the open unit disc U. I.e., UN consists of all z — (zi, • • • , ZN) 
in CN (the space of N complex variables) with \ZJ\ < 1 îorj — 1, • • •, N. 
We write U in place of Ul. If l^p< «>, HP(UN) is the space of all 
holomorphic functions ƒ in UN for which 

sup (\/2T)N I • • • I | / O i ^ 1 , • • • , rNe*») \pdOi • • • d9N < oo, 
J -TC J ~TT 

the supremum being taken over all choices of n , • • • , TN such that 
0 ^ r , < l . The £th root of this supremum is defined to be | | / | | j , ; this 
gives a Banach space norm. (The boundary behavior of these func­
tions is discussed in Chapter XVII of [3].) 

The class of all bounded holomorphic functions in UN is denoted 
by H«(UN). 

The zero-set of a function ƒ defined in UN is the set of all z £ UN a t 
which ƒ(*)=(). 

I t is well known that the zero-set of every ƒ ̂ HP(U), for any p, is 
also the zero-set of some g^H°°(U). These zero-sets, in one variable, 
are completely characterized by the Blaschke condition XX1 — | ce;| ) 
< oo. For N>i a different phenomenon occurs: 

THEOREM A. There exists a function ƒ, not identically 0, such that 
(a) ƒ G # p ( Ü72) for allp<oo, but 
(t>) if g£#°°(E^2) #wd if Jfte zero-set of g contains the zero-set of ƒ, 

/Aew g is identically 0. 

Let us call a subspace 5 of HP(UN) invariant if multiplication by 
the coordinate functions zi, • • • , SJV maps 5 into 5. The closed in­
variant subspaces of HP(U) are known precisely: they are generated 
by inner functions [l, pp. 8, 25]. But if we consider the smallest 
closed invariant subspace of Hv{ U2) which contains the function ƒ of 
Theorem A we obtain the following: 

COROLLARY. If 1 ^p< oo, there is a nontrivial closed invariant sub-
space of HP(U2) which contains no bounded function (except 0). 
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To every fÇzHl(U) there correspond two functions g, h^H2(U) 
such that fÇzgh. The usual proof of this factorization theorem [3, 
Vol. I, p. 275] even shows that g and h can be so constructed that 
their boundary values satisfy | g\ 2 = | h\ 2 = | / | a.e. The work of Hel-
son and Lowdenslager has extended this stronger result to H ^func­
tions on compact connected abelian groups G, where analyticity is 
defined relative to some total order of the dual group of G [2, p. 208]. 
I t seems likely that the factorization fails in Hl(UN) if N>1. The 
following theorem shows at least that the above-mentioned stronger 
result fails very badly if N>2. 

THEOREM B. Suppose e > 0 , M < < » . There exists an irreducible 
homogeneous polynomial f in 3 variables, with | | / | | i<€, | | / | |2>.M. For 
any such f we have ||g||2||ft||2> Af whenever ƒ = gh and g, &£H 2 ( [ / 3 ) . 

An immediate consequence of Theorem B is the observation that 
the bilinear continuous map 

M: H2(U*) X #2(t /3) -> Hl(U*), 

defined by ju(g, h) =gh, is not open at the origin. This by itself may 
imply that the range of /x cannot be all of Hl( Uz). 

In any case, Theorem B suffices to establish a "nonfactorization 
theorem" for Dirichlet series. Let us say that a function F of the form 

00 

n*-l 

is a Dirichlet series of class Hp (1 ^p< <») if (a) the series converges 
absolutely in the open right half-plane, and (b) 

sup< lim 1/2T I | F(<r + it) \*dt\ < <*>. 
<r>o (ir-*» t/_r ; 

(The existence of the limit is assured by almost periodicity.) 

THEOREM C. There exists a Dirichlet series of class Hl which is not a 
product of two Dirichlet series of class H2. 

We conclude with brief outlines of the proofs. 
PROOF OF THEOREM A. Fix a number R> 1. Let {otk} be a sequence 

of complex numbers, |a*| = 1 , such that every point of some infinite 
set E occurs infinitely many times in {a&}. Let {njc} be a rapidly 
increasing sequence of positive integers. Define 

4^ ( /z + âkw\nk) 
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Note that 1 2 + 5 ^ 1 ^ 2 on the closure of U2 and that equality occurs 
only on a circle in the distinguished boundary IT2, i.e., on a set of 
measure 0. Hence {rtk} can be chosen inductively so that the integrals 
Jr2 | /w| p are bounded, as m—>oo, for each p< oo (the bound will de­
pend on p), where fm denotes the product of the first m factors. The 
product will also converge uniformly on compact subsets of U2. Thus 
fÇzHp(U2) and ƒ does not vanish identically. 

Suppose geH°°(C/2) and g = 0 whenever h = 0. For PEE and XG U 
put g#(X) = g(X, jSX). If ajb = |8, then g$ vanishes a t every nuth root of 
\/R. This happens for infinitely many k, and since goGi?°°(kO one 
deduces from Jensen's formula that g/s(X)=0 for all X£ i7 . In other 
words, the zero-set of g contains every disc 

£>£= {(X,0 \ ) :XG U} (peE). 

All these discs intersect a t (0, 0). This forces g to be identically 0. 
PROOF OF THEOREM B. Let Pn be the space of all homogeneous 

polynomials of degree n> in 3 variables. If n is large enough, there 
exists ƒ ÇzPn with | | / | | i<€, | | / | |2> Af. A dimensionality argument shows 
that the irreducible members of P„ form a dense (in fact, open) sub­
set of P n . Hence we can adjust ƒ so that it is irreducible. If now ƒ=gh, 
g = lL,gky h ~ ]Ĉ fc> where gk and hk are homogeneous polynomials of 
degree &, then ƒ is the product of the lowest non vanishing components 
of g and h, say f=gjhn-.j. But ƒ is irreducible. Hence j = 0 or j = n. 
Finally, ||g||2së||gi||a, since the various g^s are orthogonal to each 
other; likewise, ||&||2è||ft»-/||2. 

PROOF OF THEOREM C. There are homogeneous irreducible poly­
nomials fk(zu %2, 23) with ||/*||i<2"~*, ||/*||*>fc. Let Nh be the degree of 
f kt let Ck be the sum of the absolute values of the coefficients of ƒ*, 
let {pj} be an increasing sequence of distinct primes such that 

Pu > ( A W * * , 

and define 
00 

F(s) = 2 ƒ*(#»> pZk+1, pM+2). 

Our choice of {pj} assures the absolute convergence of the Dirichlet 
series of F(s), if Re s > 0 . With the aid of Theorem B it follows easily 
that this F has the properties stated in Theorem C. In fact, one can 
even show that F is not the product of any finite number of Dirichlet 
series of class H2. 
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