ZEROS AND FACTORIZATIONS OF HOLOMORPHIC FUNCTIONS

BY WALTER RUDIN¹

Communicated by H. Helson, May 31, 1966

For $N=1, 2, 3, \cdots$ we let U^N denote the Cartesian product of N copies of the open unit disc U. I.e., U^N consists of all $z=(z_1, \cdots, z_N)$ in C^N (the space of N complex variables) with $|z_j| < 1$ for $j=1, \cdots, N$. We write U in place of U^1 . If $1 \le p < \infty$, $H^p(U^N)$ is the space of all holomorphic functions f in U^N for which

$$\sup (1/2\pi)^N \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} |f(r_1e^{i\theta_1}, \cdots, r_Ne^{i\theta_N})|^p d\theta_1 \cdots d\theta_N < \infty,$$

the supremum being taken over all choices of r_1, \dots, r_N such that $0 \le r_i < 1$. The pth root of this supremum is defined to be $||f||_p$; this gives a Banach space norm. (The boundary behavior of these functions is discussed in Chapter XVII of [3].)

The class of all bounded holomorphic functions in U^N is denoted by $H^{\infty}(U^N)$.

The zero-set of a function f defined in U^N is the set of all $z \in U^N$ at which f(z) = 0.

It is well known that the zero-set of every $f \in H^p(U)$, for any p, is also the zero-set of some $g \in H^\infty(U)$. These zero-sets, in one variable, are completely characterized by the Blaschke condition $\sum (1-|\alpha_i|) < \infty$. For N > 1 a different phenomenon occurs:

THEOREM A. There exists a function f, not identically 0, such that (a) $f \in H^p(U^2)$ for all $p < \infty$, but

(b) if $g \in H^{\infty}(U^2)$ and if the zero-set of g contains the zero-set of f, then g is identically 0.

Let us call a subspace S of $H^p(U^N)$ invariant if multiplication by the coordinate functions z_1, \dots, z_N maps S into S. The closed invariant subspaces of $H^p(U)$ are known precisely: they are generated by inner functions [1, pp. 8, 25]. But if we consider the smallest closed invariant subspace of $H^p(U^2)$ which contains the function f of Theorem A we obtain the following:

COROLLARY. If $1 \le p < \infty$, there is a nontrivial closed invariant subspace of $H^p(U^2)$ which contains no bounded function (except 0).

¹ Supported by NSF Grant GP-3483.

To every $f \in H^1(U)$ there correspond two functions g, $h \in H^2(U)$ such that $f \in gh$. The usual proof of this factorization theorem [3, Vol. I, p. 275] even shows that g and h can be so constructed that their boundary values satisfy $|g|^2 = |h|^2 = |f|$ a.e. The work of Helson and Lowdenslager has extended this stronger result to H^1 -functions on compact connected abelian groups G, where analyticity is defined relative to some total order of the dual group of G [2, p. 208]. It seems likely that the factorization fails in $H^1(U^N)$ if N > 1. The following theorem shows at least that the above-mentioned stronger result fails very badly if N > 2.

THEOREM B. Suppose $\epsilon > 0$, $M < \infty$. There exists an irreducible homogeneous polynomial f in 3 variables, with $||f||_1 < \epsilon$, $||f||_2 > M$. For any such f we have $||g||_2 ||h||_2 > M$ whenever f = gh and g, $h \in H^2(U^3)$.

An immediate consequence of Theorem B is the observation that the bilinear continuous map

$$\mu: H^2(U^3) \times H^2(U^3) \to H^1(U^3),$$

defined by $\mu(g, h) = gh$, is not open at the origin. This by itself may imply that the range of μ cannot be all of $H^1(U^3)$.

In any case, Theorem B suffices to establish a "nonfactorization theorem" for Dirichlet series. Let us say that a function F of the form

$$F(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

is a Dirichlet series of class H^p ($1 \le p < \infty$) if (a) the series converges absolutely in the open right half-plane, and (b)

$$\sup_{\sigma>0} \left\{ \lim_{T\to\infty} 1/2T \int_{-T}^{T} |F(\sigma+it)|^p dt \right\} < \infty.$$

(The existence of the limit is assured by almost periodicity.)

THEOREM C. There exists a Dirichlet series of class H^1 which is not a product of two Dirichlet series of class H^2 .

We conclude with brief outlines of the proofs.

PROOF OF THEOREM A. Fix a number R > 1. Let $\{\alpha_k\}$ be a sequence of complex numbers, $|\alpha_k| = 1$, such that every point of some infinite set E occurs infinitely many times in $\{\alpha_k\}$. Let $\{n_k\}$ be a rapidly increasing sequence of positive integers. Define

$$f(z, w) = \prod_{k=1}^{\infty} \left\{ 1 - R \left(\frac{z + \bar{\alpha}_k w}{2} \right)^{n_k} \right\}.$$

Note that $|z+\bar{\alpha}_k w| \leq 2$ on the closure of U^2 and that equality occurs only on a circle in the distinguished boundary T^2 , i.e., on a set of measure 0. Hence $\{n_k\}$ can be chosen inductively so that the integrals $\int_{T^2} |f_m|^p$ are bounded, as $m\to\infty$, for each $p<\infty$ (the bound will depend on p), where f_m denotes the product of the first m factors. The product will also converge uniformly on compact subsets of U^2 . Thus $f \in H^p(U^2)$ and f does not vanish identically.

Suppose $g \in H^{\infty}(U^2)$ and g = 0 whenever h = 0. For $\beta \in E$ and $\lambda \in U$ put $g_{\beta}(\lambda) = g(\lambda, \beta\lambda)$. If $\alpha_k = \beta$, then g_{β} vanishes at every n_k th root of 1/R. This happens for infinitely many k, and since $g_{\beta} \in H^{\infty}(U)$ one deduces from Jensen's formula that $g_{\beta}(\lambda) = 0$ for all $\lambda \in U$. In other words, the zero-set of g contains every disc

$$D_{\beta} = \{(\lambda, \beta\lambda) : \lambda \in U\} \quad (\beta \in E).$$

All these discs intersect at (0, 0). This forces g to be identically 0.

PROOF OF THEOREM B. Let P_n be the space of all homogeneous polynomials of degree n, in 3 variables. If n is large enough, there exists $f \in P_n$ with $||f||_1 < \epsilon$, $||f||_2 > M$. A dimensionality argument shows that the irreducible members of P_n form a dense (in fact, open) subset of P_n . Hence we can adjust f so that it is irreducible. If now f = gh, $g = \sum g_k$, $h = \sum h_k$, where g_k and h_k are homogeneous polynomials of degree k, then f is the product of the lowest nonvanishing components of g and h, say $f = g_j h_{n-j}$. But f is irreducible. Hence j = 0 or j = n. Finally, $||g||_2 \ge ||g_j||_2$, since the various g_k 's are orthogonal to each other; likewise, $||h||_2 \ge ||h_{n-j}||_2$.

PROOF OF THEOREM C. There are homogeneous irreducible polynomials $f_k(z_1, z_2, z_3)$ with $||f_k||_1 < 2^{-k}$, $||f_k||_2 > k$. Let N_k be the degree of f_k , let C_k be the sum of the absolute values of the coefficients of f_k , let $\{p_j\}$ be an increasing sequence of distinct primes such that

$$p_{3k} > (k^2C_k)^{k/N_k},$$

and define

$$F(s) = \sum_{k=1}^{\infty} f_k(p_{3k}^{-s}, p_{3k+1}^{-s}, p_{3k+2}^{-s}).$$

Our choice of $\{p_j\}$ assures the absolute convergence of the Dirichlet series of F(s), if Re s>0. With the aid of Theorem B it follows easily that this F has the properties stated in Theorem C. In fact, one can even show that F is not the product of any finite number of Dirichlet series of class H^2 .

REFERENCES

- 1. Henry Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.
 - 2. Walter Rudin, Fourier analysis on groups, Interscience, New York, 1962.
- 3. Antoni Zygmund, *Trigonometric series*, 2nd ed., Cambridge Univ. Press, New York, 1959.

University of Wisconsin