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1. Definitions and preliminaries. We shall consider real functions 
of n variables with compact support. 

Let x — (xi, • • • , xn) be a cartesian coordinate system and let 
%i = (xi, • • • i #»-i, Xi+i, • • • , xn) be a point in n — 1 space, so that 
x = (xit Xi). A function ƒ is said to be of type BVT if there are equiva­
lent functions fiy i = 1, • • • , n, such that, for almost all %i9 the varia­
tion Vi(f, %i) of ƒ as a function of Xi is finite, and V< is a summable 
function of £»-. The functions of type BVT are those for which the 
partial derivatives are measures, [9], and those for which the area is 
finite, [ l ] , [4]. ƒ is said to be ACT if it is BVT and the equivalent 
ƒ,-, i = l , • • • , n, may be chosen to be absolutely continuous for al­
most all Xi. These are the functions whose partial derivatives are 
functions, [3], [ l l ] , and for which the area is given by the classical 
formula [4]. 

A function ƒ is said to be essentially linearly continuous if, for every 
i = 1, • • • , n, there is an equivalent ƒ< which is continuous as a func­
tion of Xi for almost all #». ƒ is said to be linearly continuous if there 
is a g equivalent to ƒ such that , for every i = 1, • • • , w, g is continuous 
in Xi for almost all £»-. I t is known, [S], that every essentially linearly 
continuous function which is of type BVT is linearly continuous, and 
tha t in the case of functions of two variables these are the ones for 
which the area is equal to the Hausdorff 2 dimensional measure of 
the graph. Linearly continuous functions which are of type BVT will 
be called of type L. 

Let ƒ be of type BVT, let (jui, • • • , JU») be its gradient measure, and 
let m be Lebesgue measure. The total variation ctf of the vector valued 
measure (w, /xlf • • • , /xn) is the area measure, [2], [8]. 

Functions of types BVT, ACT, and L may be discontinuous every­
where. However, they may be considered to be the respective ana­
logues of the functions of bounded variation, the absolutely continu­
ous functions, and the continuous functions of bounded variation in 
the one variable case. 

1 Supported by National Science Foundation Grant No. GP 03515. A detailed 
paper will appear in Acta Mathematica. 
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2. Results and theorems. For functions of type BVT, we have the 
following beautiful theorem of Michael, [lO], [ô]. 

THEOREM A. If f is of type BVT, and has support in a cube Q, then 
for every e > 0 there is a continuously differentiate g such that the mea­
sure of the set on which ƒ is different from g is less than e and \ a/(Q) 
-ag(Q)\ <e. 

An immediate consequence of this fact, which is of interest, is the 
following theorem. 

THEOREM B. ƒ G ACT if and only if f or every e > 0 there is a con­
tinuously differ entiahle g such that if E= [x: f(x) 7*g{x)\ then af(E) <e 
and aQ(E) <e. 

For the case of functions of two variables, we obtained, in [7], a 
similar characterization of functions of type L. 

THEOREM C. Iff is a function of type BVT of two variables, then f is 
of type L if and only if, for every e>0 , there is a continuous g such that 
if E= [x: f(x) 7*g(x)] then af(E) <e and a9(E) <e. 

In particular, this implies that functions of type L are independent 
of coordinates. Functions which are not of type BVT may be linearly 
continuous for one coordinate system but not for another one, [7]. 

We cannot prove Theorem C for n>2. In this paper, we are able 
to prove a theorem of this sort for n variables, with continuity re­
placed by approximate continuity. 

THEOREM I. If f is a function of type BVT then ƒ is linearly con­
tinuous of and only if, for every e> 0, there is an approximately continu­
ous g such that if E= [x: f(x) 9^g{x)\ then (Xf(E) <e and ag(E) <e. 

We shall not make any remarks regarding the proof of this theo­
rem except to say that part of it involves the following fact which 
may be of interest in itself. 

THEOREM I I . If f is of type BVT and approximately continuous, 
then it is linearly continuous. 

Approximately continuous functions are taken by one-one bi-
lipschitzian mappings into approximately continuous functions. 
Theorem I accordingly yields the following result. 

THEOREM I I I . The class L is invariant under one-one bilipschitzian 
mappings. 

We itemize several related facts. 
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(a) For every ƒ GL, there is a g equivalent to ƒ which is continuous 
as a function of one variable along almost all lines in every direction. 

(b) The integral means {fm} of ƒ converge uniformly to g on almost 
all lines in every direction. Thus {fm} converges to g everywhere, 
except on a set 5 whose projection has (n — 1) measure zero on every 
hyperplane. 

(c) If M is any C1 manifold then g is defined (n — 1) almost every­
where on M. 

3. Further remarks. We consider a metric which seems to play an 
important part in the classes of functions being discussed here. 

For ƒ and g of type BVT, let 

For measures /x and z>, let 

AG*, v) = sup|/x(E) -v(E)\, 

where E varies over the Borel sets, and let 

d(f, g) = *(f, g) + A(a/, a,). 

We list the following facts related to this metric. 
(a) For functions of one variable, the spaces of absolutely continu­

ous functions, functions of bounded variation, and continuous func­
tions of bounded variation, are all complete. 

(b) For functions of two variables, L is the completion of the set 
of continuous functions of type BVT. 

(c) For functions of n variables the spaces of functions of types 
BVT, ACT, and L are all complete. 

(d) For functions of n variables L is the completion of the set of 
approximately continuous functions of type BVT, and ACT is the 
completion of C or of C00. 
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