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For an operator T on a Hubert space H, let W(T) = {(Tx, x) : xÇ£H 
and \\x\\ = 1} denote the numerical range of T\ and let S(T) designate 
the convex hull of <T(JH), the spectrum of T. 

I t is well known, for a normal operator T, that clW(T) =2)( r ) . 
Our main results are, in a certain sense, converses to this statement. 
They generalize results of Donoghue [ l ] , Hildebrandt [2], Nieminen 
[4], Meng [3], Putnam [6], and the author [7]. 

I. First, some definitions. A curve C in the complex plane is convex 
if it has a support line at every point. If, at every point, the curve 
and the origin lie on the same side of the support line, the curve is said 
to be convex with respect to the origin. 

A curve CE<B, if 
(1) C is given by a single valued function R=f(d), where R>0 for 

(2) both C and C~l (R = l/f(-6)) are convex, 
(3) both C and C~x are convex with respect to the origin. 
Membership in the class 6 is not intrinsic to a curve. For example, 

it is not preserved under translation. Roughly speaking however, the 
curves in 6 may be said to be "flat" convex curves. 

The first of our main results is 

THEOREM 1. Let <r(T) lie on a curve C£(B. Then T is normal if and 
only if W(T±V)C2(T^). 

Since the unit circle is clearly in 6, as an immediate consequence, 
we obtain 

THEOREM A [DONOGHUE] . If \\T^~% ^ 1 and W(T) is contained in 
the unit disc, then T is unitary. 

The following sharper version of Donoghue's theorem is also a 
corollary of Theorem 1. 

THEOREM B. If T is invertible and both W(T) and W(T~l) are con­
tained in the unit disc, then T is unitary. 

Theorem 1 may be said to be best possible in the following sense. 
There exists an operator T where 
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(1) <r(T) is given as a single valued function R =/(0) ; 
(2) both <r(T) and eiT*1) are convex curves; 
(3) both a(T) and the reflection of G{T~1) with respect to a sup­

port line, are convex with respect to the origin; 
(4) W(T±l)C2(T±l). 

However T is not normal. 
Despite this, the following modification of Theorem 1 is valid. 

THEOREM 2. Let cr(T) lie on a smooth convex curve. If 

(1) W(T) C S ( r ) 

and 

(2) J F [ ( r - 2 f l 1 C l [ ( r - Z / ) 1 , forz(£<r(T), 

then T is normal. 

Here, smooth means a continuous second derivative. Note that 
even though 5 is a convex curve, in general 5 _ 1 is not. Thus 
X[(T — zl)~l] may engulf <r[(T — zl)"1] at many points. 

From this theorem, we may deduce 

THEOREM C [PUTNAM, STAMPFLI] . If T is hyponormal, and a(T) 
lies on a smooth convex curve, then T is normal. 

Because of the many conditions, short of normality, which are 
known to imply W(T)C2(T) (see [2], [5], and [9]), there are nu­
merous other corollaries of Theorems 1 and 2. These, and the proofs, 
will appear elsewhere [8]. 
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