A COUNTEREXAMPLE ON RELATIVE REGULAR NEIGHBORHOODS

BY RALPH TINDELL1

Communicated by J. Milnor, April 12, 1966

Hudson and Zeeman defined the concept of a relative regular neighborhood in [1], and gave an existence theorem and two uniqueness theorems; the purpose of this note is to show that the uniqueness theorems are false. A corrected version of these theorems has been announced by L. S. Husch and will appear later. For 3-manifolds, however, the corrected version is equivalent to the original.

For general terminology and definitions, see Zeeman [2]. Suppose K, L are subcomplexes of some complex J. We say that K is link collapsible on L if $lk(A, \operatorname{Cl}(K-L))$ is collapsible for any simplex A of $\operatorname{Cl}(K-L)\cap L$. If X and Y are compact polyhedra in a polyhedral manifold M, we say that X is link collapsible on Y if there is a triangulation K, L of X, Y such that K is link collapsible on L. For example, it is easy to see that a manifold is always link collapsible on any subpolyhedron of its boundary. Let X, Y, N be compact polyhedra in M. We say that N is a regular neighborhood of X mod Y in M if

- (1) N is an m-manifold ($m = \dim M$),
- (2) N is a topological neighborhood of X Y in M and

$$N \cap Y = N \cap Y = \operatorname{Cl}(X - Y) \cap Y$$

(3) N collapses to Cl(X - Y).

The uniqueness theorems given by Hudson and Zeeman say, among other things, that any two regular neighborhoods of $X \mod Y$ in M are homeomorphic keeping Cl(X-Y) fixed, provided X is link collapsible on Y.

Let (B^3, B^1) be a knotted 3, 1 ball pair in E^3 and let $B^4 = a * B^3$ and $B^2 = a * B^1$ where $a = (0, 0, 0, 1) \subset E^4$ and * denotes join. The 4, 2 ball pair (B^4, B^2) is locally knotted at the vertex a and hence is knotted. However it is easy to see that B^2 is unknotted in E^4 . Let $h: E^4 \to E^4$ be an onto piecewise linear homeomorphism such that $h(B^2) = \Delta$ is a 2-simplex. B^4 collapses cone-wise to B^2 , so that $h(B^4)$ collapses to $h(B^2) = \Delta$. Also $\dot{\Delta} \subset h(\dot{B}^4)$ and $\dot{\Delta} \subset h(\dot{B}^4)$, so that $h(B^4)$ is a regular neighborhood of Δ mod $\dot{\Delta}$ in E^4 . Let Σ be the 2-fold suspension of Δ in E^4 ; then Σ is a regular neighborhood of Δ mod $\dot{\Delta}$ in E^4 .

¹ The author was supported by the National Science Foundation, Grant GP 4006

If the above uniqueness theorem were true, there would be a homeomorphism carrying $h((B^4), \Delta)$ onto (Σ, Δ) which implies that $(h(B^4), \Delta) = (h(B^4), h(B^2))$ is an unknotted ball pair. This is clearly false since it is a homeomorph of the knotted ball pair (B^4, B^2) . Clearly this type of argument can be carried out in E^n for every $n \ge 4$, so that the uniqueness theorem is false for all dimensions greater than 3; as remarked above, the theorem is true for 3-manifolds.

The author wishes to thank Professor Tatsuo Homma for suggesting a simplification of the author's counter-example.

REFERENCES

- 1. J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods, Proc. London Math. Soc. (3) 11 (1964), 719-745.
- 2. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Etudes Sci. Publ. Math., Paris, 1963. (mimeographed notes)
- 3. L. S. Husch, On relative regular neighborhoods. Preliminary report, Abstract 66T-212, Notices Amer. Math. Soc. 13 (1966), 386.

FLORIDA STATE UNIVERSITY