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Consider the following two conjectures: 
C(n) : (The combinatorial Schoenflies conjecture.) A combinatorial 

(n — 1)-sphere on a combinatorial n-sphere decomposes the latter into 
two combinatorial n-ce\ls. 

D(n): Let Wn be an orientable combinatorial manifold without 
boundary and let Mn~l be a closed orientable combinatorial manifold 
imbedded piecewise linearly in Wn. Let U be a regular neighborhood 
of Mn~~l in Wn. Then there exists a piecewise linear homeomorphism 
h: Mn~1X[-\.\ l ]->C/such that 

(1) h(x} 0) = x, 

(2) h is onto. 

I t is easily seen that D(n) implies C(n) for all w ^ 4 by using the 
Hauptvermutung for combinatorial cells and spheres [ l0] . In [8], 
Noguchi shows that C(l), C(2), • • • , C(n) imply D(n + 1). By using 
the fact tha t a compact component of the boundary of a combina­
torial manifold is combinatorially collared [9], [ l l ] , it is easily shown 
that C(n) implies D(n + \). However it is possible to prove a weaker 
version of D(n + 1) without the use of C(n) for the special case when 
W, M are spheres. 

THEOREM. Let ^ n ( n ^ 4 ) be a combinatorial sphere embedded piece-
wise linearly in the combinatorial sphere Sn+l. Let U be a regular neigh­
borhood of X / in 5 n + 1 . Then there exists a piecewise linear homeomor­
phism h: 1 > X [ - 1 ; 1]->5W+1 such that / K Z > X [ - 1 ; l ]) = E7. 

PROOF. (For definitions of terms used see [ l l ] . ) Since C(i),i = l, 2, 3, 
is valid [ l ] , [ó], it follows from the remarks above that the theorem 
is true for w<4. Suppose n>4. 

Since X / i s a deformation retract of £7, the ith integral homology 
groups of X / and U are isomorphic for all i. I t follows then from 
Alexander duality and the unicoherence of the sphere that the closure 
of 5n + 1— U, C1(5W+1— U), is the union of two connected closed sets, 
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Di, D2 with a connected boundary Ti, T2 respectively. Since U is a 
combinatorial manifold, from [2], we have that each Di is a combin­
atorial manifold. Similarly, Sn+1— X / ^ i U i ^ where DiCRi and 
CI i^PiCl R2 = ! > • By either [3] or [7], CI Ri and CI R2 are topo­
logical (^ + 1)-cells. 

We want to show that each Ti is simply connected. L e t / : 51—>Ti 
be a continuous map of the 1-sphere into T\. By the simplicial ap­
proximation theorem, we may assume ƒ is piecewise linear. Since U is 
simply connected (for it is of the same homotopy type as X /0 , /(S1) 
bounds a disk N in U. We may assume N is polyhedral and in general 
position with respect to X / \ Then if NC\ X / ^ 0 > NC\ ^ n is a finite 
collection of simple closed curves. Since X / '1S simply connected, we 
can suppose that N lies in UT\Cl Ri; for by the usual alteration tech­
niques, see, for example, [4], we can replace N by a disk which is 
bounded by f(Sl) and lies in UT^Cl Ri. By using the collar of the 
boundary of CI R\, we can assume that NC\ 2 > = 0 . Since U- ] [> 
= (T1VJT2) X [0, 1), we can then push N into T\. 

Since Di^JU\ClRi, i — \, 2, it follows that each DiUU is con-
tractible and hence from the fact that each Ti is bicollared and from 
duality, each Di has homology groups of a point. Since each Ti is 
simply connected it follows from a similar argument as above that 
each Di is simply-connected. From the Hurewicz Isomorphism Theo­
rem, it follows that each Di is contractible. Hence from [lO], we 
have that each Di is a combinatorial (w + l)-cell. From [2], each 
CliS^-Di) is a combinatorial (n + l)-cell. Then £7 = C1(C1(S*+1 

— Di)— D2) is piecewise linear homeomorphic t o X / X [ — 1 ; l ] [ l l ] . 
REMARKS. Attempts to prove the above theorem for manifolds not 

spheres by the techniques of Noguchi fail because of the missing di­
mension n = A. From [5], it follows that TiX(0; 1) is topologically 
homeomorphic to 5 n X(0 ; 1), but otherwise it is unknown to the 
author whether 1\ is a topological 4-sphere in the case n = 4. 
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