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A principal G-bundle £ on X is flat if and only if it is induced from
the universal covering bundle of X by a homomorphism mX—G
[6, Lemma 1]. First the holonomy map of a principal G-bundle is
defined and flat bundles are characterized. Then the reduction prob-
lem with respect to a homomorphism 7: ®—G of a finite abelian group
® is discussed for G=0(n), SO(n) and U(n).

1. The holenomy map of a principal bundle. For a differentiable
principal G-bundle £ on X a connection defines a holonomy map
QX—G. The homotopy class of this map is an invariant of &, as
shown e.g. in [2]. We first give a topological version of this invariant.
Let G be a topological group, X a space and £ a G-bundle with projec-
tion p: T—X. EX denotes the space of paths starting from the base-
point of X. Choose a basepoint in T lying in the fiber over the base-
point of X. A section s of the principal EG-bundle E(p): ET—EX
defines a map &: QX—G as follows. For w&EQX there is a unique
h(w) €G sending the basepoint of T to the endpoint of s(w).

THEOREM 1.1.

(i) h: QX—G is an H-map (that is: k carries products tnto products,
up to homotopy).

(1) The equivalence class (under inner automorphisms of G) of the
homotopy class of h is an invariant of &, called the holonomy map h(£)
of &.

(iii) (X, G): P(X, G)—[QX, G] defined by h(X, G)(§) =h(£) is a

natural transformation.

Here P(X, G) denotes the isomorphism classes of numerable G-
bundles on X. No distinction is made between a G-bundle and its
classifying map X—BG. Then the classification theorem of [3] for
numerable bundles over arbitrary spaces can be expressed by
P(X, G)=[X, BG].

ProrositioN 1.2. For the universal G-bundle nq the holonomy map
h(ne): @BG—G is a homotopy equivalence.

2. Flat bundles. Let G, be the underlying discrete group of G and
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t: Ga— G the canonical map. Observe that BG; is an Eilenberg-
MacLane space K(Gg, 1).

TrEOREM 2.1. The following conditions for E&P(X, G) are equiva-
lent.

(i) &1is flat.

(ii) &=vn for some nEP(X, Ga).

(i) k(&): QX —G factorizes through the natural projection QX —mX,
up to homotopy.

For SO(2)-bundles one has the following result.

THEOREM 2.2. §&P(X, SO(2)) is flat if and only if the rational
Euler class vanishes.

The characteristic cohomology-homomorphisn of a flat bundle
tEP(X, G) factorizes through H*(mX). Thus one obtains necessary
conditions for the characteristic classes of £.

3. r-flat bundles. As a computational device we introduce an arbi-
trary discrete group ® and a homomorphism 7: ®—G.

DEeFiNiTION 3.1. £: X—BG is r-flat if there is a map 7: X—B®
with B(r)on~~¢.

PRrOPOSITION 3.2. & is 7-flat if and only if there is a homomorphism
v: mX—®P, such that & is induced from the universal covering bundle ¢
by T ovy. In particular, 7-flat implies flat.

A homomorphism v: mX—G inducing a flat £ can be thought of
as the holonomy map and v (mX) CG as the holonomy group of &
Then for injective 7: —G a bundle is 7-flat if and only if it is flat with
holonomy group contained in ®.

We discuss 7-flat bundles for G=0(n), SO(n), U(n) and & finite
abelian. In order to simplify notations we restrict ourselves here to
the case of a cyclic group Z, of odd order. The case ®=2Zy» can be
treated similarly.

Let a: Z,—~S0(2) be defined by a(1) =exp(1/q). A representation

of Z, is orientable and of the form r=(aM, - - -, a): Z,—SO(2)"
=s SO(n) with \;=1, - -+, ¢gand m=[n/2].
THEOREM 3.3. Let £: X—BO(n) be a bundle and = (oM, - - -, a®»):

Z,—S0(n) a representation. There exists a T-flat bundle & : X—BSO(n)
with the same Pontrjagin classes as £ if and only if thereisan u S HXX, Z)
with ¢-u=0and pi(§) =a:(\], - - -, \o) - wBEH¥X, Z),1=1, - - -, n,
where o; is the ith elementary symmetric function. If & is moreover
oriented, & and & have the same Euler classif and only if x(§) =M« + *Mm
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-u™ for n=2m and x(£) =0 for n=2m-1.

Note that the Stiefel-Whitney classes of £ are trivial, as the char-
acteristic cohomology map factorizes through H*(Z,, Z,)=22,.

The proof of 3.3 is based on the computation of the characteristic
classes of 7 in the sense of [1] and a method due to Massey-Szczarba

[5].

If the bundles £: X—BG are classified by their characteristic
classes, 3.3 gives necessary and sufficient conditions for the r-flatness
of £ E.g. [11, Theorems 4.2, 4.3] for G=0(xn) and [4], [8] for G
= S0(n) prove the following.

CoROLLARY 3.4. Let X be a CW-complex, £: X—BO(n).

(i) Assume dim X <min (8, n—1); HY(X, Z) without 2-torsion and
H¥(X, Z) without 6-torsion. Then & is T-flat if and only if wi(€) =0,
w(§) =0 and IuCHX(X, Z) with ¢-u=0 and pi(E)=0;(02, - -+, NL)
~u, =1, 2.

(ii) Assume dim X =4, H*(X, Z) without 2-torsion and & oriented.
Then & is T-flat if and only if w.(£) =0, wi(£) =0 (x(§) =0 ¢f n=4) and
p1(8) =D 0 N-u? with ucHX(X, Z), ¢-u=0.

Consider a unitary representation 7: Z,— U(n). [t factorizes through
the maximal torus of U(z) and hence is of the formr=(aM, - - -, aM):
Z,— U(1) =, U(n). A result similar to 3.3 implies via the classification
theorems of [7], [11].

CoRroLLARY 3.5. Let X be a CW-complex with dim X <2n and
H2(X, Z) without (j—1)!-torsion. Then £: X—BU(n) is 7-flat if and
only if there is an uEH2(X, Z) with ¢-u=0 and ¢;(§) =o:(\1, - - -, \n)
cuty1=1, - - -, n, where c;(£) is the ith Chern class of E.

These results can be extended to a representation 7:P—G of a
finite abelian group ®, G=0(n), SO(n), U(n) as follows. Let G=0(n),
m the number of irreducible 2-dimensional components of 7 and
k=n—2m. Then one has the following factorization of 72

®— Fp = SO@)™ X Q&) £, 0(n)
where Q(k) =(Z:)* and p is the standard inclusion. First we compute
the characteristic classes of p. The characteristic classes of the 1- and
2-dimensional representations of ® are then computed by the additiv-
ity of wi: Hom(®, O(1))—HY(®, Z,) and x: Hom(®, SO(2))—H?2(®, Z).
A detailed exposition will appear in the American Journal of Math.

2 We are indebted to J. M. G. Fell for pointing out this fact.
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