ON FLAT BUNDLES

BY F. W. KAMBER AND PH. TONDEUR¹

Communicated by J. Milnor, May 10, 1966

A principal G-bundle ξ on X is flat if and only if it is induced from the universal covering bundle of X by a homomorphism $\pi_1 X \to G$ [6, Lemma 1]. First the holonomy map of a principal G-bundle is defined and flat bundles are characterized. Then the reduction problem with respect to a homomorphism $\tau: \Phi \to G$ of a finite abelian group Φ is discussed for G = O(n), SO(n) and U(n).

1. The holonomy map of a principal bundle. For a differentiable principal G-bundle ξ on X a connection defines a holonomy map $\Omega X \rightarrow G$. The homotopy class of this map is an invariant of ξ , as shown e.g. in [2]. We first give a topological version of this invariant. Let G be a topological group, X a space and ξ a G-bundle with projection $p: T \rightarrow X$. EX denotes the space of paths starting from the basepoint of X. Choose a basepoint in T lying in the fiber over the basepoint of X. A section S of the principal EG-bundle $E(p): ET \rightarrow EX$ defines a map S as follows. For S are is a unique S sending the basepoint of S to the endpoint of S(S).

THEOREM 1.1.

- (i) $h: \Omega X \rightarrow G$ is an H-map (that is: h carries products into products, up to homotopy).
- (ii) The equivalence class (under inner automorphisms of G) of the homotopy class of h is an invariant of ξ , called the holonomy map $h(\xi)$ of ξ .
- (iii) $h(X, G): P(X, G) \rightarrow [\Omega X, G]$ defined by $h(X, G)(\xi) = h(\xi)$ is a natural transformation.

Here P(X, G) denotes the isomorphism classes of numerable G-bundles on X. No distinction is made between a G-bundle and its classifying map $X \rightarrow BG$. Then the classification theorem of [3] for numerable bundles over arbitrary spaces can be expressed by P(X, G) = [X, BG].

Proposition 1.2. For the universal G-bundle η_G the holonomy map $h(\eta_G): \Omega BG \rightarrow G$ is a homotopy equivalence.

2. Flat bundles. Let G_d be the underlying discrete group of G and

¹ The first author is a Miller fellow, and the second author was partially supported by National Science Foundation grants GP-1611 and GP-3990.

 $\iota: G_d \to G$ the canonical map. Observe that BG_d is an Eilenberg-MacLane space $K(G_d, 1)$.

THEOREM 2.1. The following conditions for $\xi \in P(X, G)$ are equivalent.

- (i) ξ is flat.
- (ii) $\xi = \iota_{\star} \eta$ for some $\eta \in P(X, G_d)$.
- (iii) $h(\xi): \Omega X \rightarrow G$ factorizes through the natural projection $\Omega X \rightarrow \pi_1 X$, up to homotopy.

For SO(2)-bundles one has the following result.

THEOREM 2.2. $\xi \in P(X, SO(2))$ is flat if and only if the rational Euler class vanishes.

The characteristic cohomology-homomorphism of a flat bundle $\xi \in P(X, G)$ factorizes through $H^*(\pi_1 X)$. Thus one obtains necessary conditions for the characteristic classes of ξ .

3. τ -flat bundles. As a computational device we introduce an arbitrary discrete group Φ and a homomorphism $\tau:\Phi\to G$.

DEFINITION 3.1. $\xi: X \rightarrow BG$ is τ -flat if there is a map $\eta: X \rightarrow B\Phi$ with $B(\tau) \circ \eta \simeq \xi$.

PROPOSITION 3.2. ξ is τ -flat if and only if there is a homomorphism $\gamma: \pi_1 X \to \Phi$, such that ξ is induced from the universal covering bundle ξ by $\tau \circ \gamma$. In particular, τ -flat implies flat.

A homomorphism $\gamma: \pi_1 X \to G$ inducing a flat ξ can be thought of as the holonomy map and $\gamma(\pi_1 X) \subset G$ as the holonomy group of ξ . Then for injective $\tau: \Phi \to G$ a bundle is τ -flat if and only if it is flat with holonomy group contained in Φ .

We discuss τ -flat bundles for G = O(n), SO(n), U(n) and Φ finite abelian. In order to simplify notations we restrict ourselves here to the case of a cyclic group Z_q of odd order. The case $\Phi = Z_{2^p}$ can be treated similarly.

Let $\alpha: \mathbf{Z}_q \to SO(2)$ be defined by $\alpha(1) = \exp(1/q)$. A representation of \mathbf{Z}_q is orientable and of the form $\tau = (\alpha^{\lambda_1}, \dots, \alpha^{\lambda_m}): \mathbf{Z}_q \to SO(2)^m \to SO(n)$ with $\lambda_i = 1, \dots, q$ and $m = \lfloor n/2 \rfloor$.

THEOREM 3.3. Let $\xi: X \to BO(n)$ be a bundle and $\tau = (\alpha^{\lambda_1}, \dots, \alpha^{\lambda_m})$: $\mathbf{Z}_q \to SO(n)$ a representation. There exists a τ -flat bundle $\xi': X \to BSO(n)$ with the same Pontrjagin classes as ξ if and only if there is an $u \in H^2(X, \mathbf{Z})$ with $q \cdot u = 0$ and $p_i(\xi) = \sigma_i(\lambda_1^2, \dots, \lambda_m^2) \cdot u^{2i} \in H^{4i}(X, \mathbf{Z})$, $i = 1, \dots, n$, where σ_i is the ith elementary symmetric function. If ξ is moreover oriented, ξ' and ξ have the same Euler class if and only if $\chi(\xi) = \lambda_1 \cdots \lambda_m$

 $\cdot u^m$ for n=2m and $\chi(\xi)=0$ for n=2m+1.

Note that the Stiefel-Whitney classes of ξ' are trivial, as the characteristic cohomology map factorizes through $H^*(Z_q, Z_2) \cong Z_2$.

The proof of 3.3 is based on the computation of the characteristic classes of τ in the sense of [1] and a method due to Massey-Szczarba [5].

If the bundles $\xi: X \to BG$ are classified by their characteristic classes, 3.3 gives necessary and sufficient conditions for the τ -flatness of ξ . E.g. [11, Theorems 4.2, 4.3] for G = O(n) and [4], [8] for G = SO(n) prove the following.

COROLLARY 3.4. Let X be a CW-complex, $\xi: X \rightarrow BO(n)$.

- (i) Assume dim $X \leq \min$ (8, n-1); $H^4(X, \mathbb{Z})$ without 2-torsion and $H^8(X, \mathbb{Z})$ without 6-torsion. Then ξ is τ -flat if and only if $w_1(\xi) = 0$, $w_2(\xi) = 0$ and $\exists u \in H^2(X, \mathbb{Z})$ with $q \cdot u = 0$ and $p_i(\xi) = \sigma_i(\lambda_1^2, \dots, \lambda_m^2) \cdot u^{2i}$, i = 1, 2.
- (ii) Assume dim $X \leq 4$, $H^4(X, \mathbb{Z})$ without 2-torsion and ξ oriented. Then ξ is τ -flat if and only if $w_2(\xi) = 0$, $w_4(\xi) = 0$ ($\chi(\xi) = 0$ if n = 4) and $p_1(\xi) = \sum_{i=1}^n \lambda_i^2 \cdot u^2$ with $u \in H^2(X, \mathbb{Z})$, $q \cdot u = 0$.

Consider a unitary representation $\tau: \mathbf{Z}_q \to U(n)$. It factorizes through the maximal torus of U(n) and hence is of the form $\tau = (\alpha^{\lambda_1}, \dots, \alpha^{\lambda_n})$: $\mathbf{Z}_q \to U(1) \Longrightarrow U(n)$. A result similar to 3.3 implies via the classification theorems of [7], [11].

COROLLARY 3.5. Let X be a CW-complex with dim $X \leq 2n$ and $H^{2j}(X, \mathbb{Z})$ without (j-1)!-torsion. Then $\xi \colon X \to BU(n)$ is τ -flat if and only if there is an $u \in H^2(X, \mathbb{Z})$ with $q \cdot u = 0$ and $c_i(\xi) = \sigma_i(\lambda_1, \dots, \lambda_n) \cdot u^i$, $i = 1, \dots, n$, where $c_i(\xi)$ is the ith Chern class of ξ .

These results can be extended to a representation $\tau: \Phi \to G$ of a finite abelian group Φ , G = O(n), SO(n), U(n) as follows. Let G = O(n), m the number of irreducible 2-dimensional components of τ and k = n - 2m. Then one has the following factorization of τ^2

$$\Phi \to F_m = SO(2)^m \times Q(k) \stackrel{\rho}{\hookrightarrow} O(n)$$

where $Q(k) = (\mathbf{Z}_2)^k$ and ρ is the standard inclusion. First we compute the characteristic classes of ρ . The characteristic classes of the 1- and 2-dimensional representations of Φ are then computed by the additivity of ω_1 : Hom $(\Phi, O(1)) \rightarrow H^1(\Phi, \mathbf{Z}_2)$ and χ : Hom $(\Phi, SO(2)) \rightarrow H^2(\Phi, \mathbf{Z})$. A detailed exposition will appear in the American Journal of Math.

² We are indebted to J. M. G. Fell for pointing out this fact.

REFERENCES

- 1. M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23-64.
- 2. L. Conlon and A. F. Whitman, A note on holonomy, Proc. Amer. Math. Soc. 16 (1965), 1046-1051.
- 3. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255.
- 4. A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math. 69 (1959), 667-677.
- 5. W. S. Massey and R. H. Szczarba, Line element fields on manifolds, Trans. Amer. Math. Soc. 104 (1962), 450-456.
- 6. J. Milnor, On the existence of a connection with curvature zero, Comm. Math. Helv. 32 (1957), 215-223.
 - 7. F. Peterson, Some remarks on Chern classes, Ann. of Math. 69 (1959), 414-420.
- 8. L. S. Pontrjagin, Classification of some skew products, Dokl. Acad. Nauk SSSR, NS 47 (1945), 322-325.
- 9. J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198-232.
 - 10. N. Steenrod, The topology of fibre bundles, Princeton University Press (1951).
- 11. P. E. Thomas, Homotopy classification of maps by cohomology homomorphisms, Trans. Amer. Math. Soc. 111 (1964), 138-151.

University of California, Berkeley