
MECHANIZED MATHEMATICS 

D. H. LEHMER 

I t is indeed an honor to be invited to this platform. One has only 
to read the names of my distinguished predecessors to realize that, 
as the saying goes, I have thirty-seven acts that are hard to follow. 
As a mostly pure mathematician my concern is increased when I 
note that thirty-two of the lectures have dealt with applications of 
mathematics to other sciences. The true desperation of my predica­
ment becomes apparent when I tell you that I plan to discuss the 
application of science to mathematics. 

I am convinced, however, that if Professor Gibbs were with us to­
day he would be among the first to endorse the application of mechan­
ical devices to the better understanding of pure, as well as applied, 
mathematics. To support this conviction I should like to call your 
attention to a bit of mathematical history of the turn of the century, 
having to do with Gibb's discovery of the phenomenon that now 
bears his name. In 1898 Michelson and Stratton, at the University 
of Chicago, completed the construction of their big 80 term harmonic 
analyzer and published drawings of some of its output in Philos. Mag. 
One of these is a graph of the function 
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As we all recall, the corresponding infinite series is the Fourier series 
of the sawtooth function 

(X for — 7T < X < 7T, 

( 0 for x = 7T, 

y{x + 2TT) = y(x). 

Michelson's graph of Fso(x) showed a sort of fluttering as x approaches 
7T resulting in a nine percent overshoot of the expected value. Michel-
son knew that his instrumentation was better than this and he must 
have felt that not mechanics but mathematics was to blame. At any 
rate he wrote a rather petulant letter to Nature (of October 6, 1898) 
about it. Gibbs made two replies published December 29 and April 27, 
1899. Between these dates Gibbs must have taken a closer look at 
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the drawings, for in the second letter he corrects his first letter to 
confirm the overshoot phenomenon, the nine percent being precisely 

1 r r sin u 1 
— I du = .0895. 
T J o U 2 

Whatever else the Michelson analyzer may have contributed to the 
advancement of science, it served to call attention to an interesting 
anomaly in the theory of Fourier series. We now have a better under­
standing of this part of mathematics and are forewarned of this be­
havior elsewhere. 

Mechanical aids to mathematics are as old as mathematics itself. 
The clay tablet of the Babylonians and the papyrus of the Egyptians 
were simply ancient memory devices used sometimes for computing 
and recording mathematical results. The sand box of Archimedes is 
not far behind the blackboard on which so much modern mathe­
matics is created. Rather more mechanical were the ruler and com­
pass, the analogue instruments of the Greeks, and the piles of pebbles 
and notched sticks, the digital equipment of the same age. With the 
coming of paper and printing to Europe also came graphics, nomo­
grams, and the slide rule as further analogue equipment. The advent 
of the calculus (a word which ironically enough refers to pebbles) 
took most of mathematics down the primrose path of continuity. 
Nevertheless, one of the inventors of calculus, Leibniz, saw the need 
for mechanical aid to his newly discovered combinatorial analysis 
and accordingly invented and constructed a digital instrument, a sort 
of automatic abacus, which we now recognize as a desk calculator. 
Two centuries later such machines were to be mass produced, not for 
the mathematician but for the accountant. By the turn of this cen­
tury some mathematicians had rediscovered the desk calculator. 
Tables of logarithms began to collect dust on their shelves while a 
host of new tables of special functions began to appear in print. The 
very existence of such tables provided the excuse for other mathe­
maticians to leave their problems solved in terms of special functions. 
In this way many interesting properties of these functions were dis­
covered, even though their original inspiration was based on some in­
accurate little table prepared by what we now condescendingly call 
hand computing. We owe all this, then, to the accountant. To him 
and the census taker we owe also the punched card equipment of the 
early part of this century. 

There were some inventions and even constructions of equipment 
for special mathematical use. On the analogue side one can mention 
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the planimeter and other integrators, the harmonic analyzer, such as 
Michelson's, already mentioned. Such mechanical analogue equip­
ment culminated in the Bush differential analyser of 1930, whose com­
ponents were then gradually replaced by electronic analogues. On the 
digital side the difference engine of Babbage stands as a forlorn 
monument to brilliant invention bogged down by the inadequate 
technology of the 1860's. Much had to be learned about physics be­
fore Babbage's ideas for helping mathematics could be realized. A 
little later Jevons invented a special purpose digital device for formal 
logic. As far as I know, this was not constructed. Even today we 
have no special equipment for this purpose. 

Mention should be made of the number theory device invented 
more than 2000 years ago by Eratosthenes and called the sieve. This 
device appears to have been realized for the first time graphically by 
Hindenburg in 1776. Up to the early 20th century graphical sieves 
were used in varying forms for the construction of our large factor 
tables and for the solution of diophantine equations. The sieve be­
came mechanized in 1927 and photoelectric in 1932. 

By the end of the great depression the development of two indus­
tries, the telephone and punched card accounting, had advanced the 
technology of the electromechanical relay to a point where thousands 
of these devices could be counted upon to operate in harmony with 
tolerable reliability. I t occurred to Aiken and Stibitz that here was 
a component on which to base a workable realization of Babbage's 
difference engine. Thus in 1945 emerged two tape driven monsters, 
the immediate forerunners of our present day electronic computers. 

Also during the depression the problem of counting cosmic rays 
had led to the perfection of another bistable mechanism. This is the 
electronic flipflop or trigger circuit, used, incidentally, on the photo­
electric sieve. Mauchley and Eckert realized that, by putting tens of 
thousands of such circuits together, they could have an extremely 
fast computing system with no moving parts. Thus was conceived the 
first electronic computer, the ENIAC. With its birth in 1947 came 
a new era to mechanized mathematics, as well as our whole social 
system. The prodigious speed of the ENIAC, a relatively slow ma­
chine by today's standards, made it necessary to abandon the idea of 
human control or even a punched paper tape control. Authority was 
surrendered to the machine itself. While this obvious policy was to 
bring chill to the thoughts of newspaper editors, it had two happy 
consequences for mathematics: (a) it provided for greater flexibility 
in the use of the machine, and (b) it made necessary the introduction 
of certain logical operations or instructions that turned out to be ex-
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tremely useful to other branches of mathematics than the mere solu­
tion of differential equations. 

The last two decades have witnessed, after a slow start, improve­
ments in reliability and speed that are so great they are difficult to 
appreciate. Reliability, though less noticeable, has increased more 
than speed. With increased speed has come decreased cost per opera­
tion until now, on widely distributed machines, 10000 or more multi­
plications or 100000 or more decisions can be purchased for one cent. 
These machines are doing elementary rational and logical operations 
faster than humans by a factor variously estimated from 105 to 107. 
This factor is difficult to comprehend and has been achieved in no 
other branch of science. Hamming likes to point out that the fastest 
way one can go from Denver to New York is only about 100 times 
faster than a brisk walk. If one can do computing five or seven orders 
of magnitude faster by machine than by hand, it changes one's whole 
outlook on computing and even the reasons for doing it. Along with 
increased speed has come the larger sized memories needed to accom­
modate the larger amounts of internal data required for the solutions 
of the larger problems that now can be solved in a reasonable time. 
A modern machine also has a slightly larger repertory of commands 
than its ancestors of the early 1950's, but almost the same basic 
structure. 

In spite of these remarkable developments and the consequent 
"computer revolution," the life of the average pure research mathe­
matician goes on nearly undisturbed. There are exceptions however. 
Some of us are attempting to develop new ways of solving old prob­
lems. Back in 1948 Hartree predicted that a new mathematics would 
emerge from the electronic computer. Although this has hardly come 
to pass yet, there are a number of techniques in wide use, for exam­
ple linear programming or Monte Carlo methods, that have now be­
come feasible. However, the requirement of feasibility has never 
been much of a brake on the imagination of the pure mathematician. 
In point of fact, the methods used today are often the crudest of those 
originally proposed for hand computing, just because they are also 
the most economical. 

In a way, Hartree was right: we do have new branches of mathe­
matics whose devotees we can uncharitably call camp followers, since 
they don' t actually use the computer. These branches have sprung 
up only because electronic computers exist. Branches like cybernetics, 
artificial intelligence, automata theory, etc. are interesting in their 
own right and could have been introduced in Babbage's time a cen­
tury ago. Tha t they are really branches of mathematics is evidenced, 
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for example, by the fact that an abstract automaton is an ordered 
quadruplet [̂ 4, J3, C, D], We observe also the tendency to pass on 
to the infinite case rather than come to grips with the finite case. But 
we are getting away from mechanized mathematics. 

We were just pointing out that a small number of pure mathemati­
cians have a positive atti tude toward the computer. There are others 
whose atti tude is negative. They feel that much of the computing 
that goes on is ill advised and that it would be better if more effort 
were spent in the search for new ideas, a point that is very often well 
taken. I experienced the ultimate in negativity some years ago as an 
editor of a small computing journal. I received a short paper for 
publication which contained a value of a fundamental constant com­
puted to some 500 decimal places. In politely rejecting this contribu­
tion, I pointed out that a value to some 2000 places had already been 
published. In reply, the author called my attention to the fact that 
the earlier 2000 place value was obtained by machine whereas his 
value was more worthy of publication being a genuine handmade 
article. 

I have already indicated that the average pure mathematician has 
an indifferent attitude towards the computer. I assume that a major­
ity of those present are either pure mathematicians or have occa­
sional moments of purity in their applied thinking. For this majority 
the above mentioned atti tude needs no explanation. For the few 
others some words of comment may be needed. Why can't we 
mechanize most of the mathematics one finds in current periodicals? 
Why do so few mathematicians sign up for time at the computer 
center? I t is not the language problem since even psychologists and 
linguists can learn to converse with their computer. I t is mostly be­
cause the mathematical objects being operated upon are impossible, 
or nearly so, to explain in complete detail to the digital computer. 
Also the number of operations that need to be performed is small and 
quite within the capability of a human being. There is nothing to be 
gained by executing five logical steps at the rate of 15000 steps per 
second. To understand the first difficulty a little better, one has only 
to realize that a digital computer is a finite collection of circuits each 
capable of a finite number of stable states, usually two; at any clock 
pulse time there exists in the computer one of only a finite number of 
state configurations. Finally the computer runs for only a finite time 
interval, all too short usually, that is, for only a finite number of 
clock pulse times. All in all, the information content here is finite. 
But even a number like ic contains an infinite amount of informa­
tion. Hence the computer will never be able to understand com-
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pletely such figments of the imagination as real numbers, continuity, 
derivatives, different kinds of integrals, cosines, areas, infinite prod­
ucts, or even the set of all fibre bundles of a C* algebra. On the other 
hand the computer has no trouble with such things as finite geom­
etries, finite fields or positive integers as long as its memory capacity 
and time allotment hold out. In short, nearly all the things that the 
mathematician holds dear can only be simulated on the computer. 
The mathematician is analogue minded and the digital computer is 
not. There are other difficulties implied by this. Even the basic oper­
ations of addition and multiplication on the machine are not what 
the mathematician is used to, because of the finite width of the arith­
metic unit. Addition may give a surprising sum because of overflow. 
The associative law of multiplication may fail because of round off. 
The limit 

lim f 1 + —Y 
n->oo \ n/ 

may be 1, not ey because of floating addition. Of course, such limita­
tions have existed in the desk calculator for some time now. They are 
only compounded in the automatic version. The real difficulty lies 
in the fact that only a finite number of angels can dance on the head 
of a pin, whereas the mathematician is more apt to be interested in 
the infinite angel problem only. 

Well, as every one knows, there is, for the applied mathematician, 
a way out of all these difficulties. He can try to live with a simulated 
real number system, a discretized geometry, and a finite difference 
calculus, fighting against truncation error and round off noise by 
taking more time and space. Hopefully the conclusions reached by 
the computer somehow correspond to the right answer to the ideal 
question with sufficient accuracy for all practical purposes. 

But what if there are no practical purposes? What can be done with 
the function which is 0 when x is rational and 1 when x is irrational? 
If we are to deal with such matters there is but one way in which we 
can use the computer. We must compress our infinity of angels into 
one machine word. The computer can then perform in its finite re­
stricted logic any reasonable finite number of operations on words 
that stand for infinite sets, just as the mathematician does by hand. 
Usually this will be inadequate. The mathematician will want the 
computer to take limits and infinite subsequences and to use the 
axiom of choice. In such cases he will have to move up in the hier­
archy giving his machine words new meanings. All this may be just 
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too much trouble. Small wonder that most of us would rather be just 
left to our own devices. 

In spite of this display of pessimism, the computer does have a 
number of roles to play in the development of mathematics. There 
are two kinds of activities in mathematical research : (a) the improve­
ment of highways between the well-established parts of mathematics 
and the outposts of the realm, and (b) the establishment of new out­
posts. Taking up the second activity first, there appear to be two 
schools of thought on the question of how best to discover new out­
posts. The most popular school now-a-days favors the extension of 
existing methods of proof to more general situations. This procedure 
tends to weaken hypotheses rather than to strengthen conclusions. 
I t favors the proliferation of existence theorems and is psychologi­
cally comforting in that one is less likely to run across theorems one 
cannot prove. Under this regime mathematics would become an ex­
panding universe of generality and abstraction, spreading out over 
a multi-dimensional featureless landscape in which every stone be­
comes a nugget by definition. 

Fortunately there is a second school of thought. This school 
favors exploration as a means of discovery, a method much used by 
such men as Euler and Gauss. By more or less elaborate expeditions 
into the dark mathematical world one sometimes glimpses outlines 
of what appear to be mountains and one tries to beat a new path in 
their direction. Sometimes the hoped for mountains turn out to be 
merely nearby boulders on an otherwise flat plain. Often the moun­
tains are real enough but too much for us to conquer. New methods, 
not old ones are needed, but are wanting. Besides the frequent lack 
of success, the exploration procedure has other difficulties. One of 
these is distraction. One can find a small world of its own under every 
overturned stone. A systematic exploration of the world of mathe­
matics would turn it into a classificatory science worse than biology. 
One has to make judgments about relative importance. One principle 
here is that a theorem that makes an assertion about an infinite class 
of mathematical objects is apt to be more important than a proposi­
tion about a finite class so that it can be verified in a finite number of 
cases. There are exceptions however. One of these is the counter 
example. Untold manhours of futile effort can be saved by a single 
counter example. 

Computers have been fairly successful in the discovery of counter 
examples, especially in such disciplines as algebra, group theory and 
the theory of numbers. Once a counter example has been found it 
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makes no difference whence it came. Anyone can now verify that the 
proposed theorem is actually false. One can even be ungrateful and 
fail to mention the computer's contribution to the better understand­
ing of part of mathematics. 

Passing on from this example of minimum involvement of the 
computer, there is next the case in which no counter example is dis­
covered, but instead a large number N of instances of the proposed 
theorem are verified by the computer. As N increases, the plausibil­
ity of the theorem increases, as Polya would say, usually nonlinearly. 
Although we cannot obtain a rigorous proof this way, there is always 
a possibility that a careful analysis of many special cases may reveal 
why the proposition is generally true. Under proper direction, the 
computer can sometimes be made to carry out this analysis itself. 
Thus the computer may well be the source of the idea that leads to 
the desired proof. Again, there is no real need to mention this assis­
tance. 

Alternatively, instead of a proposition whose truth value is desired, 
we may start with a set of mathematical objects such as, for example, 
division algebras of order 32, and ask the computer to examine 
them, and make a tabulated report. Most of the fundamental classi­
cal theorems of number theory were discovered from the inspection 
of tabular evidence. Today tables can be produced in such quantities 
as to render their publication or even, in some cases, their inspection 
economically impossible. In these latter cases it is a simple matter to 
ask the computer to do the inspection internally. From the com­
puter's report one can make new conjectures which may have some 
interest and whose proof may not be too difficult. Again, in publish­
ing our results we need not give credit where some credit is due. 

Gibbs once said that algebra is the greatest labor saving device 
ever invented. Even so, it can be drudgery. Nonmathematicians 
know better than mathematicians that the digital computer is a 
powerful tool in dealing with nonnumerical data. This opens the pos­
sibility of having the computer do one's algebra for one. This has 
been going on sporadically since 1950. Codes have been written for 
carrying out the differentiation of the elementary functions, the 
manipulation of formal power series, the algebra of rational func­
tions etc. New and more powerful codes for symbol manipulation are 
promised for the near future. The theory of algebraic invariants was 
largely abandoned early in the twentieth century because the symbol 
manipulation involved became humanly unbearable. This kind of 
drudgery is easy for the computer. With our new hardware and soft­
ware, interest in parts of algebra may reawaken. In such applications 
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some credit must now be given to the computer because of its greater 
responsibility. 

Increasing this responsibility still further, let us discuss briefly the 
subject of mechanical theorem proving. Here the newspaper editor 
has visions of the machine "taking over" and long lines of unem­
ployed mathematicians. Just the opposite is true. In almost all theo­
rem proving projects, so far, many manhours and a few machine 
minutes have been spent in getting proofs of a few well known propo­
sitions. The results are a triumph for the ingenuity of human beings. 

One procedure is as follows. To prove a given proposition p, one 
introduces into the memory of the machine a set of axioms known 
to be sufficient for the proof of p, the hypotheses of the proposition, 
and finally the denial of its conclusion. I t is now up to the computer 
to make logical deductions from this input until two such results are 
contradictory. I t is not very clear what the exact ground rules of this 
game are. Clearly it is unfair to help the computer. But without 
some built in safeguards much valuable machine time may be lost. 
Suppose for example we are trying to get the machine to prove that 
every positive integer is the sum of 4 squares, so we introduce the 
well known Peano axioms for the natural numbers. One of these 
axioms states that whenever n is a natural number, so also is w + 1. 
Since our allotted time is finite we must somehow prevent the ma­
chine from deducing that 2 is a natural number and hence 3 is a 
natural number and hence, and so on. Another question to consider 
is: what is a fair selection of axioms? If we deliberately introduce 
axioms that are not really needed in the proof of p we can delay the 
computer by distraction. On the other hand if we give it the bare 
minimum, assuming we know it, of axioms sufficient to prove p, will 
this not be too strong a hint? This interesting game begins to look 
less like mathematics and more like pedagogy. To illustrate what 
actually happens under adequate safeguards and suitable heuristics, 
I give an example from the 1964 literature. The proposition to be 
proved is: If the square of every element of a group is the identity 
element then the group is commutative. The machine proof takes 
fourteen steps of which the four essential ones, in our notation, are 

ab = ab[(ba)(ba)] = a(bb)a(ba) — (aa)ba = ba. 

The whole program is a beautiful piece of coding. Other theorem 
proving projects have dealt with parts of plane geometry and first 
order predicate calculus. 

Another form of theorem proving, and one with which I have been 
associated, has rather different ground rules. We are dealing here 
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with a man-machine cooperative. The man furnishes to the machine 
the best information that he has about the proposed theorem and the 
sort of proof that he thinks is likely to succeed. From this you will 
infer correctly that the actual proof is unknown to the man. In fact 
he doesn't know whether the theorem is false, or, if true, whether the 
machine can prove it. The machine is asked to carry out the logical 
steps of the proof, if indeed it can, in the allotted time. You will infer 
from this that there are a great many steps and that they cannot be 
carried out by hand. Usually the steps are not only numerous but 
are connected in some complicated combinatorial way. Here we are 
exploiting not only the speed of the computer but also its logical 
circuitry that allows it to keep track of and to modify its own 
complicated program to a degree well beyond human capability. 
Theorems of this kind are not easy to find in those drab branches of 
mathematics where elaborate proofs are not the rule. However, there 
are infinitely many such theorems in number theory alone. A very 
simple example of such a theorem is the following: Every set of five 
consecutive odd numbers contains either a prime or else a composite 
number divisible by a prime greater than or equal to 37. This theo­
rem is best possible. The proof contains 2048 steps and is much too 
difficult to follow in detail. The computer has found much more elab­
orate proofs of theorems having to do with the distribution of power 
residues with respect to a prime modulus. In such cases the proof 
tree may contain millions of tiny branches even though the machine 
is provided with heuristic safeguards and a whole memory full of in­
structions. These programs will make curious reading for the arche-
ologist of the distant future. To add a touch of reality to my remarks 
I can give a specific theorem whose proof is not only well beyond the 
ability of a team of human beings, but also beyond those computers 
that one finds at the big universities. By this I mean that I expect 
the proof would cost several thousand dollars. 

The theorem has to do with the distribution of the so called quintic 
residues of a prime py that is, the numbers modulo p that are con­
gruent to a fifth power of an integer. The theorem to be proved is the 
following: There exists a world constant C such that every prime 
£>3331 has three quintic residues that are consecutive integers < C . 
The proviso, £ > 3 3 3 1 , is necessary because the prime £ = 3331 has 
no such set of three quintic residues. We know that if C exists it 
must exceed 76613, but I would be surprised if it were less than a 
million. 

To return for a moment to the first mentioned research activity, 
that of building of improved, or alternate, highways between well 
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established locations and the outposts of mathematics. The mecha­
nization of this activity appears, a t this time, to be very inefficient or 
too difficult. However, already in the case of Gelernter's pioneering 
work in plane geometry, one sees the possibility of producing differ­
ent kinds of proofs by assigning different priorities to different heu­
ristic strategies. In another two decades the state of the art may have 
advanced sufficiently to program the making of roads from A to B 
via specified points C and D, as one now does by hand every semester 
in planning a graduate course. By this time no doubt mechanical 
theorem proving will have advanced to mechanical theory building. 
Of course, the mathematician will be still further ahead of this. 

For the more immediate future there are a t least two interesting 
opportunities for furthering the mechanization of mathematics. One 
of these is the remote console, the on line, time sharing computing 
system. With language general enough to handle symbol manipula­
tion as well as some simple-minded numerical work, such a system 
can provide a working atmosphere almost comparable to that with 
which the average mathematician is familiar. The instant turn-around 
time of this system allows the mathematician to concentrate on one 
problem at a time instead of the five or six that efficient operation 
otherwise requires. 

Another opportunity that needs further consideration is the con­
struction of special purpose hardware for doing special mathematical 
research. The economics of even a minor project of this sort seems, 
a t first sight, to be dubious. However there are ways around this 
stumbling block. Every advance in electronic technology makes ob­
solete, and nearly worthless, components and equipment that were 
until recently the best that money could buy. Slave labor is available 
from the graduate school of the electrical engineering department. 
As an illustration I cite here the special purpose Delay Line Sieve 
built this way at the University of California for occasional use on 
large number theory problems. In spite of its relative simplicity it 
can perform thirty-one divisions, inspect the remainders, and decide 
what to do next, all in a millionth of a second. 

In conclusion I should like to speculate briefly on the overall im­
pact of mechanization upon mathematics of the not too distant future. 
Mechanization tends to emphasize practice rather than theory, deeds 
rather than words, explicit answers rather than existence statements, 
definitions that are formalized rather than behavioristic, local rather 
than global phenomena, the limited rather than the infinite, the con­
crete rather than the abstract, and one could almost say, the scientific 
rather than the artistic. Man's role in this symbiosis should be to 
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supply the imagination, the judgment, the criticism, and yes, the 
control, as necessary, to further the search for truth in mathematics. 
The computer is the instrument of our observatory, our window to 
the hard facts of the world of mathematics. I t would be a pleasure 
to predict that, as time goes on, the use of the instrument will become 
widespread and the nature of mathematics will slowly change from 
the dangerously unstable fluid art that it is apparently approaching 
today to a more and more structured and explicit science. 

There is an alternate prediction. Already we see, instead, a split­
ting from mathematics of a new branch commonly called computer 
science, which includes enough technology to frighten away your 
topologist or functional analyst. Soon disciplinary fences will be 
erected. I t has been said that the invention of photography relieved 
the graphic artist of his obligation to depict nature and drove him 
into impressionism and finally to abstraction. This, it seems to me, 
is ap t to be also the future of mathematics. Still we do have Ansel 
Adams. I t will be interesting to hear what the seventy-sixth Gibbs 
Lecturer has to say about it. 


