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If /x is a complex measure (countably additive on a <r-field of sub­
sets of some space), it is obvious that there is a measurable set E 
such that 

I M ( £ ) I ^ ilMI 
where ||ju|| denotes the total variation of 11. In fact a set E can be 
found for which 

7T 

We shall give a simple proof of this. If fx is a vector valued measure 
with values in Rn (with the usual Euclidean norm) we shall show by 
a suitable modification of our argument that there is a set E with 

i k i o i i s — T(n/2) hi 
11 v Jlï 2*1'2 r((» + i)/2) " H 

Asymptotically this is ||ju||/(27ra)1/2, which is much better than the 
obvious ||/x||/2«. 

THEOREM 1. Let JJL be a complex valued measure of total variation 1. 
Then there is a measurable set E such that \ fx(E) | ^ 1/T. 

PROOF. Consider first the special case where fx is a Borel measure 
on the unit circle of the complex plane (which we identify with the 
real line (mod 2x)), and is such that for every measurable set E, 

/*(£) = f #> | n | (dd) 

where | /A| (E) denotes the total variation of ju on the set E. Then 
1 Partially supported under grant NSF-GP-5493. 
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max | ix(E) | = max I eid | /z | (dd) 
E measurable E measurable I *̂  E I 

I /» X+7T/2 I I /» X+TT/2 

à max I eio | M | (d0) = max I e™-» \ » \ (dd) 
X I ^ X - T T / 2 I X |«/X- i r /2 

/» X+TT/2 

è max I Re(e*^"x>) | M | (</0) 
/» A+7T/ 

I / • 27T /» X+7T/2 

è — I I Re(c»'^x>) | n | (<») dX 
27T J 0 ^ X - T T / 2 

j[ / • 2x /» 0+3x/2 j[ 

= — I I Re(e«*-*>) JX | M | (<») = — • 
27T • / 0 *^ 0+TT/2 7T 

For the general case define ƒ to be the Radon-Nikodym derivative 
f = dfx/d\fi\, and define v(E) =pi(/~1(£)) for £ a Borel subset of the 
unit circle. The proof is easily completed by application of the special 
case to the measure v. 

The constant 1/w is best possible; for some measures /x there is no 
set E with | /X(JE) | >1/T. We shall now determine these measures. 

THEOREM 2. Let \xbea complex valued measure with ||/x|[ = 1, and j the 
Radon-Nikodym derivative dfx/d\fx\. Then a necessary and sufficient 
condition that there be no measurable set E with i*(E) >1/T is that 

ƒ /(OHMIO») = 0 

for n = ± l , ± 2 , ± 4 , ± 6 , ± 8 , ± 

PROOF. Define Fx= {/; X - 7 r / 2 ^ a r g / ( 0 gX + (7r/2)(mod 2TT)}. 

If E is any measurable set, IJL(E) =reiX for some choice of real num­
bers r > 0 and X; it is then easily checked that Ke(e~ixfi(F\)) è^ . Thus 
|jix(E)| ^1/TT for all measurable sets E if and only if Re(e~~*V(^x)) 
rgl/ir for all real X. As in the proof of Theorem 1, we observe that ƒ 
induces a measure v on the unit circle such that v(S) =/x(/~"1(5)) for 
each measurable set 5 of the unit circle. Then 

/

» X+x/2 

Re(eW~») | v | (dd). 
X-x/2 

But this is a continuous function of X whose mean for 0^X^27r 
was shown in the proof of Theorem 1 to be \/ir. Thus it never ex­
ceeds 1/w in value if and only if it is constant and a continuous func­
tion on the interval [0, 27r] is constant if and only if its nonzero 
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Fourier coefficients vanish. Moreover we may interpret the function 
Re(0~~*V(^x)) as the convolution of the measure \v\ with the func­
tion defined to be Re(ea) for — 7r/2^X^7r/2, and zero elsewhere on 
the interval [—7r, 7T], and then extended to a periodic function. With 
this interpretation we see that Re(e~iXfx(F\)) has vanishing nonzero 
Fourier coefficients if and only if the nth Fourier-Stieltjes coefficient 
of the measure \v\ vanishes for n= ± 1 , ± 2 , ± 4 , ± 6 , • • • . But the 
nth Fourier-Stieltjes coefficient of \v\ is 

ƒ 'e™\v\(dO) = ƒ f(f)n\v\(dt). 

The proof is thus complete. A final remark: the vanishing of the 
w-th Fourier-Stieltjes coefficients of \v\ for n even, w?^0, means 

K l H (dff)+ \v\ (d(w + 6)))= dd/27T, 

and thus implies that \v\ is absolutely continuous with respect to 
Lebesgue measure. 

Professor S. Kakutani has suggested the following geometric proof 
of Theorem 1. The condition that ||/x|| = 1 is equivalent to the condi­
tion that the convex hull of the range of fx have perimeter 2, a fact 
which is easily seen for a finite measure space and easily deduced 
from this for a general measure space. (If /x is completely nonatomic 
its range is already a convex set, by a theorem of Liapunoff, see 
[2]). We thus consider the following isoperimetric problem; "Of all 
convex sets of perimeter 2, which one is contained in the smallest 
disk with centre 0?" I t is easily seen that the answer is the disk of 
radius 1/ir, and from this fact Theorem 1 follows. 

If fx is merely a finitely additive set function (complex valued of 
total variation 1) it is easily deduced from Theorem 1 (for finite 
measure spaces) that for any e > 0 there is a measurable set E with 

M(£) è 1/x - e. 

I t may be asked how the constant 1/T must be changed if instead 
of the usual Euclidean distance, the plane is given a different norm 
|| -||. Using the approach of Professor Kakutani it is not difficult to 
show that the constant becomes 2/s, where s is the perimeter of the 
unit ball j || ^ l } , s being measured with the distance function 
obtained from the norm ||-| | . This perimeter is smallest when the 
unit ball is a regular hexagon: in this case the perimeter is 6. 
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We now consider the vector valued case. 

THEOREM 3. Let v be a measure with values in Rn and such that 
||p|| = 1. Then there is a measurable set E with 

^>Kr(f))/M^)> 
PROOF. We introduce the following notation. Denote by S the 

unit sphere in Rn, and by S+ the set {x; xE:St Xi^O} (xi being the 
first co-ordinate of x). Denote by m the usual spherical mean on 5 ; 
that is the uniformly distributed measure on S with m(5) = l . Let 
G denote the orthogonal group acting in Rn. Let x0 be the point 
(1, 0, 0, • • • , 0) of S and let K be the group of those elements of G 
which fix XQ. We shall use the notation mR for Haar measure on K, 
and m G for the Haar measure on G (with the usual normalization for 
compact groups). For each positive measure JJL on S define a positive 
measure p, on G as follows : if ƒ is a continuous function on G define 
ƒ on 5 by 

f(g%o) = I f(gk)mK(dk) 

and define jK to be that measure on G such that for any continuous 
function ƒ on G 

f f(g)Kdg) = f K*Mdx). 
J G J Si 

I t is obvious that rh = mG, and that for any continuous function 
h on 5, 

/
h(x)ix(d%) = I h(gx0)p(dg). 

ft J G 

Finally, denote by <j> the continuous function on S defined by 
</>(x) =max(xi, 0). As in the proof of Theorem 1 there is no loss of 
generality in assuming that the measure v is a Borel measure on S 
such that 

"(E) = I Xfi(dx) 
J E 

for each measurable set E, where JX is a probability measure on 5. 
But then 
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max 
E measurab 

ƒ f I 

x/x(dx) ^ max I xn(dx) 
^ ,. E II g£G \ \ J g-lS+ II 

ƒ II || r 

Xfx(dx) = max I gxjx{dx 
„V.V. ,. g-lS+ Il geG II J g~lS+ 

^ max I (g%)in(dx) — max I <t>{g%)n(dx) 
gGG J g~1S+ gEG " g~1S+ 

= max I <j)(gx)jji(dx) = max 1 4>(gg'x0)jX(dgf) 
g(=G J S gGG " G 

â I I 4>{ggr^)n{dgf)mG{dg) = I J <t>(ggfXo)mG(dg)iX(dgf) 

= I I <l>(gxo)mQ(dg)n(dg) = I cj>(gxo)mG(dg) 
J QJ Q J G 

C C 1 r(»/2) 
= I <j>(x)m(dx) = I %im(dx) = • 

J 8 Js+ 27T1/2 r ( ( » + l)/2) 
As in Theorem 1 this is best possible, as the case fi = m demonstrates. 

After the obvious modification the discussion after Theorem 2 on the 
case of finitely additive set functions is applicable once again. 

There seems to be no satisfactory geometric proof of Theorem 3 
analogous to the one suggested by Professor Kakutani for Theorem 1. 
However the condition \\v\\ = 1 can be stated geometrically in terms 
of the convex hull of the range of v. I t is known that if K is any com­
pact convex set, and if B denotes the unit ball of Rn, then the volume 
of K+rB is a polynomial in r of degree n (see [ l]) . If K is the convex 
hull of the range of the vector valued measure j>, then the condition 
that \\v\\ = 1 is equivalent to the coefficient of r71"1 in the polynomial 
vol(K+rB) being equal to the n — 1 dimensional volume of the unit 
ball in Rn~\ 
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