558 DANIEL RIDER [May

2. Jean Geffroy, Contribution d la théorie des valeurs extrémes, Publ. Inst. Statist.
Univ. Paris 7 (1958), 36-123; 8 (1959) 3-52.

3. , Localisation asymptotigue du polyédre d'appui d'um échatillion La-
plagian d k dimensions, Publ. Inst, Statist. Univ. Paris 10 (1961), 213-228.

4. B. V. Gnedenko, Sur la distribution limite du terme maximum d'une série
aléatoire, Ann. of Math. 44 (1943), 423-453.

S. Ulf Grenander, Probabilities on algebraic structures, Wiley, New York, 1963.

6. A. Renyi and R. Sulanke, Uber die konvexe Hiille von n siifallig gewahlten. Punk-
ten I and II, Z. Wahrscheinkeitstheorie und Verw. Gebiete 2 (1963), 75-84; 3 (1964),
138-148.

7. A. V. Skorohod, Limit theorems for stochastic processes, Theor. Probability
Appl. 1 (1956), 261-290. (Engl. transl.)

8. V. Strassen, An invariance principle for the law of the iterated logarithm, Z.
Wahrscheinkeitstheorie und Verw. Gebiete 3 (1964), 211-226.

DartMouTH COLLEGE

A RELATION BETWEEN A THEOREM OF BOHR AND
SIDON SETS

BY DANIEL RIDER!
Communicated by W. Rudin, December 17, 1965

1. Introduction. In 1913, Bohr [1] proved the following theorem
for Dirichlet series: if

0

€Y flo +it) = 2 c(m)n=o+

ne=]

and if [f(o'+it)| =<1 for all 6>0, then

(2) >l =1,

the sum in (2) extending over all primes.
A set of positive integers E will be called a Bohr set if there is a
finite constant B such that for every function f as in (1)

@) 2 |ew)| = B.

nEE
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It is easily seen that E is a Bohr set if and only if for every finite

sum f(f) = X c(n)n—it
@ 2 |em| =B suwp |f0)].

nel

Let G be a compact Abelian group and E a subset of its dual group
TI'. An E-polynomial is a trigonometric polynomial, F, such that
F(y) =0 for y&E where

o) = [ Fen(-nan  ver.

Here dx is normalized Haar measure on G. E is called a Sidon set if
there is a finite constant B such that

®) 2 | Fm)| = Bsup | F@)| = B|[FA*

Y€E

for every E-polynomial F.

Let T% be the direct product of a countably infinite collection of
circles. T% is a compact Abelian group with dual group Z«. Each
YyEZ« is given by a sequence of integers {ak} where only a finite
number of the oy are not zero. M(7%) is the space of regular Borel
measures, p, on 7% with finite total variation ||u||. g is the Fourier-
Stieltjes transform of u.

In this note we give a characterization of Bohr sets in terms of
Sidon sets in Z¢ and certain measures on T%. It is then possible to
obtain a sufficient arithmetic condition for Bohr sets.

2. The relation between Bohr sets and Sidon sets. P will denote
the positive cone of Z». Let py, P, * * - be the primes. If # is an integer
and n=]]»%, then we associate # with the element y,= (o, @3, - - + )
of P. For a set of positive integers E, = {7,.: ncE } .

To a function f(t)= D c(n)n—i we associate the function F(x)
= Y c(n)ya(x) on T« Bohr noticed the following: if ¢: (— o, w)—T
by

(6) o(t) = (exp(—itlog p1), exp(—itlog ps), -+ +)

then v,(¢(t)) =n" so that F(¢(¢)) =f(t). Now since {log p;} is
linearly independent over the integers, ¢(— », «) is dense in T%,
Thus

) |Flle= sup |f®)].
<t<®»
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THEOREM. A set of positive integers E is a Bohr set if and only if
(a) E is a Sidon set in T°, and
(b) there is a measure u& M(T*) such that

ply) =1 ity EE,
=0 if‘yEP—E.

Proor. Let F(x)= D F(v.)yn(x) be a P-polynomial and let
@) = ZE(ya)nt.
If E is a Bohr set then by (7)

9) ::é | B¢y | =

Thus if b is a function on E and I b('y)l <1 then L(F)
= > ,e2b(y) F(y) is a bounded linear functional on the P-polynomials
with norm at most B. By the Hahn-Banach and Riesz representation
theorems there is a measure & M(7*) with

py) = b(v), ~vEE,
=0, yEP—E.

By [3, Theorem 5.7.3], £ is a Sidon set; by taking b=1 we obtain the
measure for (b).

Conversely suppose (a) and (b) are true for E and let f()
= Y c(n)n—i* be a finite sum. By (a) and the proof of [3, Theorem
5.7.3] there is y&€M(T*) with ||»]| B (B depends only on E) and
c(n)p(y,) = ‘ c(n)\ for nE€E. Let p be as in (b) and * denote ordinary
convolution. Then

®

Z |Fow| s B_sw 70| = BlIF].

nel

2 1em)| = uxvx X c(n)ya(0)

E
" = Bllu[l|7ll.
=B swp  |f0)].
—0<t<®
COROLLARY. Let E={m1, ns, - - - } be a set of positive integers satis-

fying
() {log nj} are linearly independent over the integers, and
(d) if n is a positive integer, { B,-} 15 a collection of integers, Zﬁ,- =1,
and n=]]nf then nEE.

Then E is a Bohr set.

Proor. It follows from (c) thatif ki <k:< - - - <k, then 05 +v,,
+YnE * + + £V Thus by [2, Theorem 1.5], E is a Sidon set.
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Let H= {'yEZ“’: y= Zﬁfy,.,., B;integers, » 8;=1 } . His a coset of a
subgroup of Z» and by (d) £=H'NP. By [3, p. 60] there is u& M(T*)
such that g is the characteristic function of H'. u satisfies condition
(b) of the theorem.

3. Examples. The corollary shows that there are Bohr sets which
are not the finite union of sets with pairwise relatively prime ele-
ments. For example, Plj)z, pIPS, P4p5, P4P5, P4p7, Pspa, «+ ., Itisknown
[3, p. 126] that every infinite subset of a discrete group contains an
infinite Sidon subset. However this is not true of Bohr sets.

ExAMPLE. Let F= {n,-=(p1p2 Ry HH } Then F contains no in-
finite Bohr subset.

In fact F contains no infinite subset for which there is a measure

satisfying (8). For suppose E = {n,-l, Mgy * * } and p satisfies (8). Let
ui be the translation of u such that
(10) () = p(v + ay)-

{,uk} has a weak star convergent subsequence to a measure v & M (1)
which by a lemma of Helson [3, p. 66] must be singular with respect
to Haar measure.

But this is impossible since it is easily seen that

py) =1 ify=0,
=0 ify#0

so that » must be the Haar measure.
This example also shows that the corollary is false without (d).
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