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1. Introduction. We study some methods of constructing inter-
polation spaces “between” two Banach spaces. The methods extend
the complex method introduced by Calderén [1] and Lions [2]. Our
results generalize some of those of Calderén [3].

2. Complex interpolation. We shall call two Banach spaces Xy, X3
compatible if they can be continuously embedded in a topological
vector space V. We let X+ X; denote the set of those elements x&V
which can be written in the form

2.1) x = x© 4 gO,
where xV & X;, =0, 1. Set
(2‘2) ”x”Xo+X1 = inf{“xw)“xo + Hx(l)”xl},

where the infimum is taken over all pairs x EX; satisfying (2.1).
One easily checks that (2.2) gives a norm on X+ X; when X, and X,
are compatible. Moreover, when X+ X is equipped with this norm,
it becomes a Banach space (cf. [3]).

Let @ denote the set of complex valued functions of the complex
variable {=£-414n which are continuous on bounded subsets of §,
where Q is the strip 0 <€ <1 in the { =£+44n plane. Let ® be the set of
those functions in @ which are holomorphic in £ and nonvanishing in
8. For pE£ @ the space 3(X,, X1; p) will consist of those functions
f(§) with values in X+ X; such that (a) f({) is continuous on bounded

subsets of &, (b) f(¢) is holomorphic in @, (c) fG+m) EX;, j=0,1,1
real, and

(2.3) IfGG + in)llx; < const | o(j + im) | .

Under the norm

2.9 |fllsecoxsr = maxsup | p(j + in) [FY|fG + in)||x;,

j=0,1 ¢

3¢(X,, X1; p) becomes a Banach space.

Let T be a distribution with compact support in © (i.e., TE&'(Q)).
For pE @ we let X7 ,=[X, X1]r,, denote the set of those xEX o+ X1
for which there is an fE3C(X,, X1; p) satisfying

(2.5) x = T(f).
526
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If we introduce the norm
lell s = ey, = it pm, o,
where the infimum is taken over all f which satisfy (2.5), then we have
ProrositTioN 2.1. X7, s a Banach space.
Let C denote the (Banach space of) complex numbers.

PROPOSITION 2.2. If p, 6 EQ and o EF(C, C; ), then Xur,,EXr o0
with

(2.6) ””” e S ”“’”;;c(c‘cmllx”w?'vm * € Xor,p.
Set X7 =Xr 1. Then we have
PRrOPOSITION 2.3. If pE® then Xr ,=Xr, with the same norm.

We let X7T»=[X,, X;]7* designate the set of those x& X+ X; for
which there is an fE3¢(X,, X1; p) such that

2.7 ST = «T
in the sense of distributions. The norm in X7 is given by

2.9 Jellr = llll e = 0t g e .

where the infimum is taken over all fE3C(X,, X1; p) satisfying (2.7).
Set XT=XT.1,

ProrosITION 2.4. X7 45 a Banach space.
PROPOSITION 2.5. If p, cEQ and w&EC2(Q), then XT T XT» and
llalloms < [lal| 7, & € X7,
If w0 on the support of T, the spaces are identical.

PROPOSITION 2.6. If p, 0 E®, pT =0T, then Xp ,=Xr,, XTr=XT"7
with identical norms.

Let 3¢'(X,, X1; p) denote the space of (X4 X,)-valued functions
f(¢) on & which are continuous on bounded subsets of &, holomorphic
on Q and such that f(j+it) —f(j+12) is in X; for all real 4, ¢, j=0, 1,
and

2.9) lfG+its) — fG+it)|| 5, = M f oGt+in|d,  t<ini=01.

The smallest constant M which works in (2.9) is the seminorm of fin
3¢/ (X, X1; p). If one considers 3¢'(X,, Xi; p) modulo the constant
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functions, this becomes a norm and the resulting space is a Banach
space. We say that x € X7, if x=T(f") for some fE3’'(X,, X1; p) and
its norm is the infimum of the seminorms of all such f. Similarly,
x&X'Te if f'T=xT for some such f and its norm is defined corre-
spondingly. If fE3¢(X,, X1; p), then one checks easily that [§ f({)d;
is in 3¢'(X,, X1; p) with seminorm not greater than the norm of f.
Hence

(2.10) X1, G X1,  XT# S X'
with continuous injections.

PRrROPOSITION 2.7. Propositions 2.1-2.6 hold true if each space is re-
placed by its primed counterpart.

THEOREM 2.8. Let Yo, Y1 be another pair of compatible Banach
spaces and define Yr ,, elc., in the same way. If L is a linear mapping
of Xo+X1 into Yo+ Y1 which is bounded from X; to Y;, j=0, 1, then
it is a bounded mapping from Xr , to Yz, and from XT» to YT», The
same holds true for the primed spaces.

Let Z,, - - -, Zy be Banach spaces continuously imbedded in a
topological vector space V. We let YV, denote the Banach space
consisting of those elements of V of the form y= Zyn, Y. E V,, with
norm given by ||y|| =inf X_||7./|¥,. The space N¥, is the set of those
y common to all the Y, with norm

Il = max||3]»..
Set JC(X(), X1) =3C(Xo, X, 1)

PROPOSITION 2.9. Assume that there are distributions Ty, + + -, Ty
and functions wy, -+ + -, Wy} Ty, * * +, Ty i1 3C(C, C) such that
(2.11) T=2 0T Tn=r1,T.

Then Xr, = Xr,, XT*=NXTr*, with equivalent norms. The same
relationship holds for the primed spaces.

ProrosITiON 2.10. If p, s EQ satisfy

PNy 01, treal
o(4 =+ it)
then Xz.,S X1 XT#CXTw and
el 2.0 < Ml|allz.p,  ||all 7o = 2|a]| 7.

The same holds for the primed spaces.

We now assume that the support of T consists of a finite number of
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points 2, - - -, 2y in Q. When acting on holomorphic functions T can
be written in the form

N mg
(2.12) T =2 adW(z).

k=1 =0

In this case we have

THEOREM 2.11. If pEQ and wEC*(Q), then Xyr ,&Xr, with con-
tinuous injection. If w#0 on the support of T, then the spaces are
equivalent. Similar statements are true for the primed spaces.

COROLLARY 2.12. If pE®, then Xr ,=Xr.
TrEOREM 2.13. If XM\ X; is dense in both X, and X, then the dual
of Xy is isomorphic to [ X3, XT]'T; that of X7 to [X§, X¥]7.

THEOREM 2.14. If either Xy or X1 is reflexive, then Xp=Xr and
X'T=XT, Moreover, both of these spaces are reflexive when X,N\Xy is
dense in both Xy and Xi.

If ak,m; 0, we shall say that the distribution (2.12) is of order m;
at z;. We shall say that T is contained in T and write 7\C T if the
support of T is contained in that of T and it is not of greater order
than T at any point of its support.

TaEOREM 2.15. If TWC T, then Xr,,SXr, and X702 DXT? with
continuous inclusions. The same holds for the primed spaces.

THEOREM 2.16. If T= YT, and each T,CT, then
XT:P = Z XTnvﬂ’ XT.p = n XT’"p'
A similar statement is true for the primed spaces.

THEOREM 2.17. X N\X is dense in Xr. If XoN\ X, s dense in both
Xo and X, it is dense in XT.

THEOREM 2.18. If X¢N\X, is dense in both X, and X,, then for
0=0:<0;=1

[Xoyy XoJsior = Xorroco—on
with equivalent norms, where Xo= Xs).

3. Some examples. We consider distributions #(x) on Enr,
2=(xy, * + +, %n). Let Fu(¢) denote the Fourier transform of u(x),
E=(, - - -, &). For a positive function A(¢) we let B*? denote the
set of those u(x) such that \Gu S L?(E"), 1 Sp = «. The norm of u(x)
in BM»? is the L? norm of AFu. These spaces were studied by Hér-
mander [4] when the function A(§) satisfies certain conditions.
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Let No(£), M(£) be functions satisfying NM(§) 2NXo(§) > 0. We assume
that the distribution T is of the form (2.12). Set ¥ =A\1/\o, sx =Re 2,

a= 2 vl + logy)™, B =2y 1+ logy)™,
A2=Noe, Ag=No/B. We also write
Br = [BN», Bu?]y, BT = [Bhs, Buer]T,
THEOREM 3.1. By=B*», BT=BM? with equivalent norms.

The proofs of Theorem 3.1 can be made to depend upon the follow-
ing lemmas.

LeEMMA 3.2. uEBr if and only if there is a g&3¢(L?, L?) such that
1
Fu = — T(v*g).
Ao

LEMMA 3.3. Let 2, * - -, 2y be fixed points in Q and let {vk;}, 15k
=N, 0=1<m, be given complex numbers. Then one can find a function
wE(C, C) satisfying

w”)(zk)=vk;, 1§k§N, 0§l§m,
llollzec.or = KX | val,
where the constant K depends only on the 2, and m.
COROLLARY 3.4. If T CT, there is a T&3C(C, C) such that To=1T.

The second family of function spaces we shall consider is closely
related to the first. For positive A(§) we let H»? denote the set of
those distributions #(x) such that F\FuEL?(E"), where ! denotes
the inverse Fourier transform. When A(¢) is of the form

(4.6) M) = (L+ [£]9° areal,
these spaces were studied by Calderén [5], Aronszajn, Mulla, Szep-
tycki [6], Lions, Magenes [7] and others.

In order to obtain the counterpart of Theorem 3.1 for the spaces

H*? we shall make further restrictions. Specifically we shall assume
that 1 <p < » and that the functions

yit, ¢ real,
v*(log v)"/a, v A(logV)"/B, 1=kSN,m=m
all belong to the space M, of multipliers in L?. Moreover the norms

of yi in M, are to be uniformly bounded. By employing Mihlin’s

theorem [8], one can show easily that these assumptions are implied
by
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| £|1#t| Dry(®) | < const |y ®) ], |u]| = n,

which in turn holds when Ay and \; are of the form (4.6).
Under the above assumptions we can state

THEOREM 3.5. Hp= H*»», HT= H? with equivalent norms, where
Hp = [H», HM2]p, HT = [H», FM2]T,

The proof of Theorem 3.5 follows that of Theorem 3.1 very closely.
In place of Lemma 4.2 we have

LemMA 3.6. uE Hr if and only if there is a gE3C(L?, L?) such that
1
Fu = — T(v3Fg).
Ao

4. Functions of an operator. Let X be a Banach space and 4 a
closed linear operator in X with dense domain D(4). We assume that
the resolvent of 4 contains the negative real axis and that

.1) o+ 4 = M@ +xn-1, r>o0.

Let ¢(¢, N\) be a complex valued function defined for {E8 and
0 <A< o and satisfying the following conditions: (a) for each { €,
¢($, \) is measurable (as a function of \) and

*.2) [Tleenla+n-1a
0
is finite, (b) considered as a function of ¢, ¢({, \) is continuous in &

with respect to the norm (4.2), (c) ¢(¢, N) is an analytic function of ¢
in Q with respect to the same norm, (d) there is a pE® such that

[TleG+mnla+nmans [oG+inl,  wrealj=01.
0

Under the above assumptions we define the following family of
operators

VG, 4) = f “sHNO+ A a, rE

ProPOsSITION 4.1. For real n the operator Y (1+1in, A) maps X into
D(4) and
(4.5) |4t +in, 4)]| = (X + D]t +in)|.

Now we consider D(4) as a Banach space contained in X with
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norm ||«|| +||4x||. We set

® am(§, N

dam ) N
Vo, ) = G ) = [TIEE o ara

m=0,1,2---,
Ye(d) =TT4(c, 4)] = fo “Tlo, DI + A7, T E &)

THEOREM 4.2. The operator Yr(A4) maps X boundedly into
Xz, = [X, D(D)]z,
with norm < M-+2. In particular Y™ (0, 4) maps X into

Xop = [X, D(4)]s o) 5

LEMMA 4.3. For real n the operator Y(in, A) maps D(A) into itself
with norm <M | p(in) | .

THEOREM 4.4. For 050+4+6,=1, ¢(6, 4) maps X, boundedly into
Xogro with norm < M—(M+2)°|p(6)].

Let ¥ be a Banach space and let B be an operator defined in ¥
with the same properties as A. In particular, we assume

|+ B s M@+,  A>o0.

Let L be a linear operator which maps X into Y in such a way that
D(A) maps into D(B). Assume that

o] = Eloll,  z€ X,
|BL#|| < K| 44|, «& D(4).
Then we have
THEOREM 4.5. For 0=0=1 the operator y(1—0, B)Ly(8, A) maps
X into D(B) and
|Bo(t — 0, BYLy(6, A)|| < ML + DKy Ki| p(0)p(1 — 6) | .
Next consider the operators 4° defined by

sin wf

40 = f A4 A)tdy, 0<6<1,
0

T
as given by Kato [11]. If we set
(¢, \)=x"t[(log 7\)2+1r2]’2{ [(log A\)2—#?] sin w{ + 27 log A cos x¢},
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then the corresponding operator ¢¥({, 4) satisfies all of the require-
ments above with p=1. Moreover

A7 =y, 4).
Hence we have by Theorem 4.2
PROPOSITION 4.6. The domain of A® is contained in X2,
We also have

PropositioN 4.7. The operator A—° maps X,, boundedly into
Xog+0—¢ for every €>0, and the operator A% maps Xy, boundedly into
Xog—0—¢ for each €>0. In particular, the domain of A° is contained in
Xo_efor each e>0.

Our proof of Proposition 4.7 rests on
LeEMMA 4.8. For x&X,, we have
[+ )l sy £ M2 + 2)°(1 + 0| 5005,
A + A)ul|s00-0y < (M + 1)=0M0(1 + 2)~|| ]| 5000)-
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