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1. Introduction. We study some methods of constructing inter­
polation spaces "between" two Banach spaces. The methods extend 
the complex method introduced by Calderón [ l ] and Lions [2]. Our 
results generalize some of those of Calderón [3]. 

2. Complex interpolation. We shall call two Banach spaces X0, X\ 
compatible if they can be continuously embedded in a topological 
vector space V. We let X0+Xi denote the set of those elements xÇzV 
which can be written in the form 

(2.1) x = *<<» + *<*>, 

where x^GXj9j = 09 1. Set 

(2.2) IIHIx^i-inflll^lk + ll^llxJ, 
where the infimum is taken over all pairs x^ÇzXj satisfying (2.1). 
One easily checks that (2.2) gives a norm on X 0 + X i when X0 and X% 
are compatible. Moreover, when X0+Xi is equipped with this norm, 
it becomes a Banach space (cf. [3]). 

Let Cfc denote the set of complex valued functions of the complex 
variable f = ̂ +irf which are continuous on bounded subsets of S, 
where fl is the strip 0 <£ < 1 in the f = £+«7 plane. Let (B be the set of 
those functions in Ct which are holomorphic in 0 and nonvanishing in 
Ô. For p£(5t the space 3C(X0, -XV, p) will consist of those functions 
/(f) with values in X0+Xi such that (a) ƒ($") is continuous on bounded 
subsets of S, (b) /(f) is holomorphic in 0, (c) f(j+iv)€:Xj,j = 0, 1,77 
real, and 

(2.3) H/0' + «y)||xy S const | p(j + iV)\ . 

Under the norm 

(2.4) ||/||aC(Xo,xi;p) = maxsup | p(j + iv) H l / O ' + ^) | |xy , 
i»o,i v 

3C(Xo, X±; p) becomes a Banach space. 
Let T be a distribution with compact support in Q (i.e., !T£S'(Q)). 

For p £ a we let XT,P^ [XQi Xi]TtP denote the set of those XÇ^XQ+XI 
for which there is an/£3CCX*0, X\\ p) satisfying 

(2.5) x=T(J). 

526 
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If we introduce the norm 

INI^-Nk.-wlWlaec.^,,. 
where the infimum is taken over all ƒ which satisfy (2.S), then we have 

PROPOSITION 2.1. XTtP is a Banach space. 

Let C denote the (Banach space of) complex numbers. 

PROPOSITION 2.2. If p, < r £ a and co£3C(C, C; <r), then X^.PQXT^ 

with 

(2-6) 

Set XT — XT.I» Then we have 

PROPOSITION 2.3. /ƒ p£(B /ften XT,p=XTp with the same norm. 

We let Xr'*E= [Xo, X i ] ^ designate the set of those xEX0+Xi for 
which there is an /£3C(X 0 , -XV, p) such that 

(2.7) fT=xT 

in the sense of distributions. The norm in XT'p is given by 

(2.8) INI r- ' -Nk"-MlWla C W l l r t , 
where the infimum is taken over al l /£3C(X 0 , X\\ p) satisfying (2.7). 
S e t - X ^ X * - 1 . 

PROPOSITION 2.4. X 7 ^ is a Banach space. 

PROPOSITION 2.5. If p, o -£a and coGC00^), tóew F ^ C I ^ - p and 

IHI"*" â |Mlr,p> xEX*"-
If 0)7*0 on the support of T, the spaces are identical. 

PROPOSITION 2.6. If p, crG©, p r = oT, then XTtp^XTfC1 XT*=XT* 
with identical norms. 

Let 3C'(X0, Xi ; p) denote the space of (XQ+XI)-valued functions 
ƒ(£) on 0 which are continuous on bounded subsets of 0, holomorphic 
on 0 and such tha t f(j+ih) —fij+ik) is in Xy for all real tu ^ j — O, 1, 
and 

(2.9) \\f(j + ih)--f(j+ih)\\x^ M f "IPO' + Ö ) ! * , / I < W = 0,1. 

The smallest constant M which works in (2.9) is the seminorm of ƒ in 
3C'(X0, Xi; p). If one considers 5C7(X0, -XV, p) modulo the constant 
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functions, this becomes a norm and the resulting space is a Banach 
space. We say that x G I ^ if x—T(j') for some/£3C'(X0 , Xi; p) and 
its norm is the infimum of the seminorms of all such ƒ. Similarly, 
xÇ~X'T'p if f T~xT for some such ƒ and its norm is defined corre­
spondingly. If /£3C(X 0 , Xi] p), then one checks easily that ƒ£ f(Ç)dç 
is in 3C'(-X*o, XL; p) with seminorm not greater than the norm of ƒ. 
Hence 

(2.10) XT,P C X i , , X*. ' C Jf'r.p 

with continuous injections. 

PROPOSITION 2.7. Propositions 2.1-2.6 feoZd /rwe *ƒ eacft s^ace is re­
placed by its primed counterpart. 

THEOREM 2.8. Let F0, Y\ be another pair of compatible Banach 
spaces and define YTtP, etc., in the same way. If L is a linear mapping 
of X0+Xi into F 0 + Y\ which is bounded from X}- to Fy, j = 0, 1, then 
it is a bounded mapping from XT,P to YT,P and from XT* to YTtf>. The 
same holds true for the primed spaces. 

Let Zi, • • • , ZN be Banach spaces continuously imbedded in a 
topological vector space V. We let 52 F n denote the Banach space 
consisting of those elements of V of the form y = ^ynf yn£: Fn , with 
norm given by ||y|| =inf ]CIWI*V The space flFn is the set of those 
y common to all the Yn with norm 

\\y\\ = max||;y||yn. 

Set 5C(X0, Xx) =5C(Xo, Xh 1). 

PROPOSITION 2.9. Assume that there are distributions Tu • • • , TN 

and functions coi, • • • , COJVÎ ri, • • • , TN in 3C(C, C) such that 

(2.11) r = 2 > n r n , Tn = rnT. 

Then XTtP s X)-XVnip, X r ' p s f | X r B , p , w/fe equivalent norms. The same 
relationship holds for the primed spaces. 

PROPOSITION 2.10. If p, o-E& satisfy 

\f>(j+it)\ 
M, j = 0 ,1 , / real 

\<r(j + it)\ 

then XT,PQXT,<T, XT>pQXT>ff and 

\\X\\T,*^M\\X\\T,P, \\4*-'£M\\4**. 

The same holds for the primed spaces. 

We now assume that the support of T consists of a finite number of 
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points j&i, • • • , ZN in £2. When acting on holomorphic functions T can 
be written in the form 

(2.12) T = £ E « M 8 ( , , ( * ) . 

In this case we have 

THEOREM 2.11. If p£ (£ (mi wGC 0 0 ^) , /Aen X0T,PQXT,P with con­
tinuous injection. If coŝ O cm /Ae support of T, then the spaces are 
equivalent. Similar statements are true for the primed spaces. 

COROLLARY 2.12. If p£(B, then XT,p=XT. 

THEOREM 2.13. If XQC\X\ is dense in both X0 and Xi, then the dual 
of XT is isomorphic to [X%, X*],T\ that of XT to [j?J, Xf]'T. 

THEOREM 2.14. If either X0 or Xi is reflexive, then X'T^XT and 
X,T^XT. Moreover, both of these spaces are reflexive when X^r\X\ is 
dense in both Xo and X±. 

If ajcmk^O, we shall say that the distribution (2.12) is of order mu 
at 2fc. We shall say that To is contained in T and write T0QT if the 
support of To is contained in that of T and it is not of greater order 
than T a t any point of its support. 

THEOREM 2.15. If T0QT, then J t r 0 ) P C I r i P and XT**^XT>f> with 
continuous inclusions. The same holds for the primed spaces. 

THEOREM 2.16. If T= ^Tn and each TnQT, then 

xTtP = E **..„ x*" s n x**+. 
A similar statement is true for the primed spaces. 

THEOREM 2.17. X0r^Xi is dense in XT. If XoC\X\ is dense in both 
Xo and Xi, it is dense in XT. 

THEOREM 2.18. If XQ(~\XI is dense in both XQ and Xi, then for 
O^0i<0 2 ^l 

[X$v Xe2]$(9) « X$1+e(e2-ei) 

with equivalent norms, where XQ = X^O). 

3. Some examples. We consider distributions u(x) on En, 
%~(xii * * • » #n). Let ïïu(%) denote the Fourier transform of u(x), 
É — fêi» é • • » ?n). For a positive function X(£) we let 5X«P denote the 
set of those u(x) such that XtFttG£p(En)> 1 èpS ©o. The norm of u(x) 
in J3X'P is the L* norm of \%u. These spaces were studied by Hör-
mander [4] when the function X(£) satisfies certain conditions. 
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Let Xo(£), Xi(£) be functions satisfying Xi(£) èX0(f) > 0 . We assume 
tha t the distribution T is of the form (2.12). Set 7=Xi/Xo, s& = Re Zkf 

a = X) 7,fc(l + log 7)wfc, P = Z 7"~*fc(l + log 7)w*> 

X2 = X0a, Xa=X0/i8. We also write 

THEOREM 3.1. BT^B%*>P, BT^BMtP with equivalent norms. 

The proofs of Theorem 3.1 can be made to depend upon the follow­
ing lemmas. 

LEMMA 3.2. u^BT if and only if there is a g£3C(i>, Lp) such that 

$u = — T(y-*g). 
Xo 

LEMMA 3.3. Let z\> • • • , ZN be fixed points in 0 and let {vu}, 1 ûk 
giV, O^Zgra, &e given complex numbers. Then one can find a function 

co£3C(C, c) satisfying 

Misere) S KJ2 \vki\, 
where the constant K depends only on the Zu and m. 

COROLLARY 3.4. If T0QT, there is a rG3C(C, C) such that T0=TT. 

The second family of function spaces we shall consider is closely 
related to the first. For positive X(£) we let H*>p denote the set of 
those distributions u(x) such that $~1\$uC:Lp(En), where $~l denotes 
the inverse Fourier transform. When X(£) is of the form 

(4.6) X ( Ö - ( 1 + U|2)*, a real, 

these spaces were studied by Calderón [5], Aronszajn, Mulla, Szep-
tycki [6], Lions, Magenes [7] and others. 

In order to obtain the counterpart of Theorem 3.1 for the spaces 
H*'* we shall make further restrictions. Specifically we shall assume 
tha t Kp < oo and tha t the functions 

yu, t real, 

7*(log 7)mA*> Y~*(log y)m/P, 1 S k S Ny m ^ trik 

all belong to the space Mv of multipliers in Lp. Moreover the norms 
of yu in Mp are to be uniformly bounded. By employing Mihlin's 
theorem [8], one can show easily tha t these assumptions are implied 
by 
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U M ^ M Ö l â const | 7 ( Ö | , UI £ n , 

which in turn holds when X0 and Xi are of the form (4.6). 
Under the above assumptions we can state 

THEOREM 3.5. Hrs=i7X8'ï>, HT^HK%tV with equivalent norms, where 

The proof of Theorem 3.5 follows that of Theorem 3.1 very closely. 
In place of Lemma 4.2 we have 

LEMMA 3.6. u(E.HT if and only if there is a gÇz3C(Lp, Lp) such that 

1 
Su = — T(y-*$g). 

AO 

4. Functions of an operator. Let X be a Banach space and A a 
closed linear operator in X with dense domain D(A). We assume that 
the resolvent of A contains the negative real axis and that 

(4.1) ||(X + A)-*\\ g M{\ + X)-1, X > 0. 

Let <£($*, X) be a complex valued function defined for f £ 0 and 
0<X< oo and satisfying the following conditions: (a) for each f GO, 
<£(£", X) is measurable (as a function of X) and 

(4.2) f M U ( f , X ) | ( l + X)-1rfX 
^ 0 

is finite, (b) considered as a function of f, <£(f, X) is continuous in 0 
with respect to the norm (4.2), (c) #(f, X) is an analytic function of f 
in Ö with respect to the same norm, (d) there is a pG(B such that 

f" I <Kj + ivA) \ (1 + W-'dX S | P(j + iv) I, *real,j = 0,1. 

Under the above assumptions we define the following family of 
operators 

iKr, A)= f %(r, x)(x + A)-* d\, r G s. 

PROPOSITION 4.1. jFor real rj the operator \l/(l+irj, A) maps X into 
D(A) and 

(4.5) | | ^ ( 1 + iv, A)\\ S (M + 1) I p(l + in) | . 

Now we consider £>(̂ 4) as a Banach space contained in X with 
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norm ||x|]+||«4x||. We set 

* w ( r , A) = —*(r> A) - ' ; <x + ^ r f x > 

m » 0, 1, 2, - • • , 

^r(ii) =r[iKr, ii)] = f "rfofo x)](x + A)-H\ T e 8'(o). 
J o 

THEOREM 4.2. 77^ operator \//T(A) maps X boundedly into 

XT%P = [Z, D(A)]TtP 

with norm ^ i k f+2 . In particular ^ ( w )(0, A) maps X into 

X™ - [X, Z>(it)]i«"Ow„. 

LEMMA 4.3. For real rj the operator \l/(irj, A) maps D(A) into itself 
with norm ^ M\ p(ir}) | . 

THEOREM 4.4. For O ^ 0 + 0 o ^ l , *A(0, A) maps X$Q boundedly into 
XeQ+e with norm gM 1^(M+2) 9 \p(0) | . 

Let F be a Banach space and let B be an operator defined in Y 
with the same properties as A. In particular, we assume 

IKx + iHI £Jf(i + x)-\ x>o. 
Let L be a linear operator which maps X into Y in such a way that 
D(A) maps into D(B). Assume tha t 

||L*|| SK0\\x\\, xEX, 

\\BLx^ ^ Kj{\Ax\\, XE D(A). 

Then we have 

THEOREM 4.5, For O g 0 ^ 1 the operator ^ ( 1 - 9 , B)I4(0, A) maps 
X into D(B) and 

| | ^ ( 1 - 0, B)Lj,(fi, A)\\ g Jf(Jf + 2)KVK[\ p(0)p(l - 0) | . 

Next consider the operators A6 defined by 

SH17T0 C™ 
A"9 = I X-*(X + i l ) - 1 d\, 0 < 0 < 1, 

T J o 

as given by Kato [ l l ] . If we set 

<Kf> A) = X-*[(log \)*+w2]-*{ [(log X) 2 -TT 2 ] sin *•£ + 2w log X cos <*?}, 
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then the corresponding operator \{/(Ç, A) satisfies all of the require­
ments above with p== 1. Moreover 

A"9 = ^ (2)(0, i l ) . 

Hence we have by Theorem 4.2 

PROPOSITION 4.6. The domain of Ad is contained in X®\ 

We also have 

PROPOSITION 4.7. The operator A~e maps XeQ boundedly into 
X$Q+$~.t for every e > 0 , and the operator A6 maps XeQ boundedly into 
XeQ-~$-~€for each e > 0 . In particular, the domain of Ae is contained in 
Xe-€for eache>0. 

Our proof of Proposition 4.7 rests on 

LEMMA 4.8. For xÇiXe0 we have 

|| (X + il)-1*!!!^) g M^(M + 2)'(1 + X)MMUo), 
\\A(X + A)^4\êi9^9) g(M+ iy~°M°(l + XHIHIK^O). 
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