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1. Introduction. The purpose of this note is the study of twice 
differentiability of the norm in a real Banach space. We establish the 
various properties of the second derivative and obtain a polar charac­
terization of twice differentiability of the norm. As a consequence of 
the various results a characterization of Hubert spaces among 
Banach spaces which may be equipped with an equivalent twice 
differentiable norm is obtained. 

2. Notations and definitions. Throughout this note E denotes a 
real Banach space with a Fréchet differentiable norm so that the 
spherical image map G on the unit sphere 5 of E into 5*, the unit 
sphere of E* (the dual of E) is a function. For complete details and 
references about the first order differentiability of the norm in E in 
relation to the function G we refer to Cudia [l] . If xÇiS then Ex 

denotes the closed subspace G(x)~l(0), 
DEFINITION. Let (£, || -||) be a Banach space. Then the norm is said 

to be twice differentiable at x j& 0 if there exists a symmetric bilinear 
functional Tx on EXE such that 

Ik + 1̂1 == Ml + G(*)* + T*(h>h) + *•(*) 
where 0*(&)/||&||2—>0 a s IWI"-^ and G{x) is the Gateux derivative of 
the norm at x. If the norm is twice differentiable at all members in 5 
then the Banach space E is said to be twice Fréchet differentiable. 
The functional Tx may be identified as a bounded operator on E into 
E* by the formula cr(Tx)(y)z = Tx(y, z). 

With the above notations we obtain the following theorems. 

THEOREM 1. If the norm of the Banach space E is twice differentiable 
at x then 

(i) the norm is twice differentiable at all members Ax, A 7*0 and 
7\*=7y|X|. 

(ii) Tx(y, y)^0 for all yÇ:E and 
(iii) the range of the operator a(Tx) C {x}L. 

1 This note is a summary of the first part of a dissertation submitted in partial 
fulfillment of the requirements for the Ph.D. degree at the University of Washington, 
Seattle. 
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As a consequence of the above theorem we obtain the following 
polar characterization for the norm in E to be twice differentiate at a 
member # £ S . 

THEOREM 2. The norm in E is twice Frêchet differentiable at a mem­
ber x G S if and only if the mapping <j> defined on Ex into {x}1- defined 
by setting <f>(h) = TX O G(x+h) where TX is the projection on E* into the 
closed subspace Qx~l(0), Qx being the canonical image of x in E**, is 
Frechet differentiable. 

As a consequence of the above theorems we obtain the following 
isomorphism theorems. 

THEOREM 3. If the norm in E is twice differentiable at an element 
XT^O and if the restriction of the operator a(Tx) to Ex is an isomorphism 
then E is isomorphic to a strictly convex Banach space. Further if 
mlyeEj\s Tx(y, y)>0 then E is isomorphic to a Hubert space. 

THEOREM 4. If the Banach space E and its dual E* are twice differ­
entiable then E is isomorphic to a Hubert space. 

The relationship between the twice differentiability of the norm 
and various notions of metric curvature [2 ] and the existence of free 
tangents [3 ] to a class of arcs on the unit sphere and the proofs of the 
above theorems will be appearing elsewhere. 
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