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Hence the C*-algebra ir%(A) and so A have a type Ill-factor *-repre-
sentation. 

This completes the proof. 
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By an n-configuration we shall mean an abstract set of n elements, 
together with the set of all unordered pairs of distinct elements from 
the set. It is convenient also to use quasi-geometrical terminology 
such as vertex for element, edge or side for a pair (2-tuple), triangle as 
well as triple (3-tuple) for a 3-subconfiguration, and so on. 

The Ramsey number N(p, g, 2) (see [3, pp. 38-43], or [2, pp. 61-
65]), for two kinds h, v of pairs (or two "colors of edges")» is the 
smallest integer such that if n*zN(p, q, 2), then any ^-configuration 
is sure to contain either an h £-tuple (a £-tuple all of whose edges are 
h) or a v g-tuple. Call a p-tuple all of whose edges are alike (h or v) 
a like £-tuple. We introduce, and partially determine the values of, 
new analogous combinatorial numbers K(p, q, 2), M(p, qf 2), and 
V(p> q, 2). 

DEFINITIONS. The number K(p, q, 2) is the smallest integer such 
that if n*zK(p> q, 2), then for each vertex, the configuration is sure 
to contain either a like £-tuple containing the vertex, or a like g-tuple 
not containing the vertex. For three kinds r, g, v of edges, M(p, q, 2) 
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is the smallest integer such that if n è M(p, g, 2), the configuration is 
sure to contain either a like p-tuple, or a j , k g-tuple (a g-tuple having 
at most two kinds j , k of edges, where j , k = r, g, or v). The number 
V(p, g, 2) is the smallest integer such that if we V(p, g, 2), then for 
each vertex of the configuration, the configuration contains either a 
like £-tuple containing the vertex, or a j , k g-tuple not containing the 
vertex. 

Consider for a moment "verticial" numbers, which otherwise are 
like the Ramsey numbers; S(p, g, 2), for example, is the smallest 
integer such that a configuration with n è S(p, g, 2) is sure to contain, 
for each vertex, either an h £-tuple containing the vertex, or a v 
g-tuple not containing the vertex. Evidently N(p, g, 2) ^-S(p, q, 2). 
But for all p*z3, g ê 3 , S(p, g, 2) =* oo : for arbitrarily large n, at one 
vertex, assign (p — 1) edges from the vertex to be h, the remainder v. 
Let one edge joining a pair of other ends of the (p~ 1) edges be v> 
and let all other edges of the ^-configuration be h. Then for the 
vertex, the ^-configuration contains neither an h £-tuple containing 
the vertex, nor a v g-tuple not containing the vertex. Moreover 
S(P, g, 2)=* oo for a l l £ è 2 , g^2 . 

Denote by W(q, p, 2) the smallest integer such that if n ê W(q, p, 2), 
then for each vertex the configuration is sure to contain either a 
j,k g-tuple containing the vertex, or a like £-tuple not containing the 
vertex. We notice that W(q, p, 2) = V(p, q, 2). 

Our results so far concerning the numbers K, ikf, V are indicated 
in the following Theorem 1 (including the table) and Theorem 2. 
For purposes of comparison, the known values of the Ramsey num­
bers N also are included: the entries in the table are the values of 
N, K, M, V in that order, for each p, q. 

THEOREM 1. For p, q from 3 to 5 inclusive, the numbers have values 
as given in the following table (cf. the table in [3, p. 42]). 

3 4 5 

3 I 6, 6, 5, 6 9, 8, 8, 10 or 11 14, 10, 14, 14 

4 9,7,5,6 18,18,10 to 17,11 to 18 

5 I 14,7,5,6 

For all p>3, we have that K(p, 3, 2) =*7;for all g ^ 3 , that K(q, g, 2) 
= N(q, g, 2) andK(3, g, 2)=2q-,forp>q, thatK(pt g, 2)£N(q, g, 2) + 1 ; 
and for q>p>3, that K(p, g, 2)^mzix(K(p-lt g, 2) + l, 2g+£~3). 
Further, N(3, 6, 2) is 17 or 18 (cf. [l]), and 17 = M(3, 6, 2) SN(3, 6, 2). 
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A configuration is called degenerate, with respect to any of the com­
binatorial numbers, in case it does contain (for each vertex in case of 
V) either a £-tuple or a g-tuple as described in the corresponding 
definition. As an example, it is quite easy to find an 8-configuration 
which is nondegenerate with respect to N(3, 4, 2)—an octagon with 
an 8-cycle plus a 4-cross (see below) of blue edges, and an 8-cycle plus 
two 4-cycles of red edges, has neither a blue triangle nor a red quad­
ruple (cf. the existence proof for the 8-configuration in [ l ] ) . The 
method of establishing the above lower bounds L is to exhibit in each 
case a nondegenerate configuration with n = L — 1. To establish an 
upper bound U, it is sufficient to show that any configuration with 
n=U must be degenerate. The value of a combinatorial number of 
course is determined in case L=U. Details will be included in a paper 
which will be offered for publication elsewhere. 

A subsidiary result, analogous to Steiner triple systems ([2] or 
[3]), is the following. A k-cycle is a closed string of k successively ad­
jacent edges, such as 12; 23; • • • ; k — 1, k; k, 1; where {l , • • • , k} 
is a subset of k of the vertices of the configuration. In any (2n + l)-
configuration, the edges can be covered (each exactly once) by 
n fe-cycles with fe = (2w+l ) . A k-cross is a set of k edges, no two of 
which are adjacent. The edges of any (2n+2)-configuration can be 
covered by n (2w+2)-cycles and an (w + l)-cross. 

THEOREM 2. We have K(p, q, 2)^N(p, q, 2), M(p, q, 2)^N(p, q, 2), 
M(p, q, 2)^V(p, q, 2). For each q, V{q, q, 2) is either M(q, q, 2) 
or M(q, q, 2) + l ; for any py V(p, q, 2)^M(q, q, 2) + l. For p>qy 

M(qt g, 2) ^mm(M(p, q, 2), V(p, q, 2)), and V(q, qy 2) ^ V(py q, 2). 
For p^3, M(p, 3, 2) = 5 , and V(p, 3, 2) = 6 . For q>3, 7(3, g, 2) 
^(3<Z-D. 

Reference [4], for example, indicates the wealth of possible ap­
plications for combinatorial results. 

REFERENCES 

1. A. M. Gleason and R. E. Greenwood, Combinatorial relations and chromatic 
graphs, Canad. J. Math. 7 (1955), 1-7. 

2. Marshall Hall, Jr., A survey of combinatorial analysis, Some aspects of analysis 
and probability, Wiley, New York, 1958, pp. 35-104. 

3. H. J. Ryser, Combinatorial mathematics, Carus Monograph, No. 14, Math. 
Assoc, of America, Wiley, New York, 1963. 

4. R. G. Busacker and T. L. Saaty, Finite graphs and networks, McGraw-Hill, New 
York, 1965. 

CLEMSON UNIVERSITY 


