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1. Introduction and statement of result. This note is a supple­
ment to the joint papers of R. H. Szczarba and the author [6], [7]. 
We proved in [6], [7] tha t for any positive integer g > l , there is a 
differentiable parallelizable manifold Mq of dimension (24g+1 — Sq — 2) 
which can be differentiably immersed in Euclidean space of codimen-
sion 1 but can not be differentiably embedded in Euclidean space of 
codimension Sq. As a consequence, the dimension difference of the 
best differentiable immersion and the best differentiable embedding 
in Euclidean space can be arbitrarily large. One may ask the same 
type of question for topological or combinatorial immersion and 
embedding. In this note, we shall modify the argument of [6], [7] to 
show that Mq (#> 1) actually has no locally flat topological (hence no 
combinatorial) embedding in Euclidean space of codimension 8g. 
Since we used the normal bundle of a differentiable embedding and 
Adams' solution of vector field problem [ l ] in the original proof of 
[6], [7], differentiability seemed to be essential. However, we shall 
replace the normal bundle by the normal fibre space of Nash-Fadell-
Spivak [9], [4], [10] and use a corollary of Adams' solution of vector 
field problem that [^«-ï, h*Q-i] is not an (8<? + l)-fold suspension to 
show the locally flat nonembeddability of Mq (#>1) in Euclidean 
space of codimension Sq. The author is indebted to Professor John 
Milnor for his comments. 

Let us first recall the manifolds Mq ( g ^ l ) . If ? and rj are sphere 
bundles with a common base, we use | to denote the vector bundle 
associated with £ and £ * rj the sphere bundle associated with £ 0 fj. 
Let Sn~l be the (n — l)-sphere where n = 2*q> q*zl. I t follows from 
results of Eckmann [3] and Adams [ l ] that Sn~l has exactly Sq 
independent vector fields. Thus we can find an (n — 8q — l)-sphere 
bundle %q over 5 n _ 1 with a cross section and with the property that 
£q*0**-1 = r(Sn-1), the tangent sphere bundle of S""1. (Here Br de­
notes the trivial (r — l) -sphere bundle.) Let Mq be the total space 

of*.-
Let Mn and Nm be two topological manifolds. A topological em­

bedding (immersion) ƒ: Mn-±Nm is' said to be locally flat [4], [5], if 
1 Research supported by National Science Foundation Grant NSF-GP2440. 
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for each point x £ M , there are neighborhoods U(x) and V(f(x)) 
such that (F( / (x) ) , f(U(x))) is topologically equivalent to (Rm

y Rn). 
Clearly, a differentiable embedding is locally flat. I t follows from 
Zeeman's unknotting theorem that a combinatorial embedding of 
codimension greater than 2 is also locally flat [13]. Moreover, local 
flatness is independent of the differential or combinatorial structure. 

THEOREM. For g > l , Mq has no locally flat embedding in Euclidean 
space with codimension &q. 

REMARK 1. The 22-dimensional manifold Mi has no locally flat 
embedding in R2S. 

REMARK 2. Let Na be a combinatorial manifold of the homotopy 
type of M g (q>l). By a recent result of Irwin (Ann. of Math. 82 
(1965), 1-14), there is a combinatorial embedding s: Sn~1(ZNq which 
represents a generator of Hn-i(Nq; Z). Let U be a neighborhood of 
s(Sn~1) in Nq. One can actually show that U has no locally flat em­
bedding in Euclidean space of codimension 8q. 

COROLLARY 1. For any integer k, there are manifolds which have 
locally flat immersion in Euclidean space with codimension 1 hut have 
no locally flat embedding in Euclidean space with codimension h. 

COROLLARY 2. For any integer fe, there are combinatorial manifolds 
which can he comhinatorially immersed in Euclidean space with co-
dimension 1 but cannot be comhinatorially emhedded in Euclidean space 
with codimension k. 

PROOF. Consider the Cr-triangulation ( r ^ l ) of the differentiable 
manifolds Mq (q>l). Following from Zeeman [13], every combina­
torial embedding with codimension greater than 2 is locally flat. 
Corollary 2 follows immediately from the theorem. 

2. Spherical normal fibre space. L e t / : MnCNm be a locally flat 
embedding. Following [9], [4], [lO], we consider the path space 

E= {w | w G (Nmy, w(t) £ Mn if and only if / = 0}. 

The initial projection p: E-+Mn defined by p(w) =w(0) is an (m — n 
— 1)-spherical fibre space over M> 

v is called the spherical normal fibre space of the embedding ƒ. If ƒ is 
a differentiable embedding with differentiable normal sphere bundle 
r), then rj is fibre homotopically equivalent to the spherical normal 
fibre space v when ƒ is considered as a locally flat embedding [4], 



i966] NONEMBEDDABILITY OF CERTAIN MANIFOLDS 279 

LEMMA 1 (MASSEY [8], STALLINGS [ i l ] ) . Let f:SnCSn+k {n^l, 
k^3) be a locally flat embedding. Then, the spherical normal fibre 
space v of f is fibre homotopically trivial. 

PROOF. By Stallings [ l l ] , f(Sn) CSn+k is unknotted. Hence, Sn+k 

—f(Sn) is of the homotopy type of S*-1. Then, v is fibre homotopi­
cally trivial by the argument of [8]. 

Let £i: S^-^Ex-^^X, and £2: S
l-l->E2->™X be two spherical fibre 

spaces. Let E be the subset of the join E\ * E2 of E\ and E2, consisting 
of the points (#i, t, x2) with the property that piXi = px2 where 
(xu t, x 2 )G£i * E2. The projection q: E—>X defined by 

q(*i, t, x2) = pi(xt) = p2{%2) 

is a spherical fibre space £ called the Whitney join of v\ and v2l and 
will be denoted by £i * £2. 

LEMMA 2 (SPIVAK [lO]). Let fi: Mn—>N™ be a differentiable embed­
ding with the normal sphere bundle v\ and let f2 : N^—^Nl be a locally 
flat embedding with spherical normal fibre space v2. Then, the spherical 
normal fibre space v of the composite embedding 

(which is clearly locally flat) is fibre homotopically equivalent to 
V!* (v2\M

n). 

PROOF. Let D be a closed tubular neighborhood of f(Mn) in iVf 
such that the exponential map (under some proper Riemannian 
metric of N™) maps the closed disc bundle 

Pi 
vi: Dm~n-* Ex-* Mn 

associated with v\ diffeomorphically onto D. We identify D with E\. 
Since Mn is a deformation retract of D, the fibre space p\(v2\ Mn) is 
fibre homotopically equivalent to v2\ D. Let g: p\(v2\ Mn)—>v2\ D be a 
fibre homotopical equivalence. Let us construct a fibre map 

h:vi*(v2\ Mn) —> v 

as follows. First recall tha t (i) every point in D is of the form exp(xi) 
with a vector xi of length ^ 1 and normal to Mn (with respect to some 
proper Riemannian metric of iVf ), (ii) every point in (v2 \ M

n) is a 
path in Nr

2 issuing from Mn and never touching iVJ1 again, (iii) every 
point of v\ * (y2\ M

n) is of the form 

(exp(#i), t, x2) for 0 ^ / ^ 1. 
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Define 

^(exp(xi), t, x2) = exp(uxi) for 0 S u â t, 

= g[p'iexp(%i)(%2)](u •— t) for / ^ u ^ 1. 

Using the differentiability of f\ and the local flatness of /2, ir is easy 
to check tha t h induces homotopical equivalence on each fibre. By 
A. Dold's criterion [2], h is a fibre homotopical equivalence. 

REMARK. A similar statement of Lemma 2 was proved in [lO]. 
Since [lO] is still unpublished and the case which we need is rather 
special, we include a somewhat simpler proof for completeness. 

3. Proof of the theorem. Let G*, be the -ET-space of degree 1 maps of 
Sk~l-^Sk~1. By [2], [ l l ] , the fibre homotopical equivalence classes 
of ^"^-fibre spaces over Sp aire one-one correspondence to the ele­
ments of Tp-i(Gk). Let (xm-k: Gk—>Gm (ragrfe) be the obvious inclusion 
induced by the suspensions of the degree 1 maps of S**"1. Let vi, vi 
be Sk~l-, Sl~l-ûbre spaces over Sp corresponding to ViÇzTrp-i(Gk), 
vzCnrp-i(Gi) respectively. By the argument of Lemma 3.1 of [6], we 
see tha t v\ * vi corresponds to 

<rl(Vi) + ak(v2) 

in wp-.i(Gh+i). 
Now, suppose that Mq (#>1) has a locally flat embedding in Eu­

clidean space of codimension &q with v as the spherical normal fibre 
space. We choose a differentiable cross section s: Sn~l—>Mq (Mq is 
given the natural differentiate structure) of £2 which has a normal 
sphere bundle v8 with the property v8 * 01 = %q. By Lemma 1, the com­
posite embedding 

£»-l ^Mq-> R2n~2 

has a fibre homotopically trivial spherical normal fibre space. Hence, 
vs * (v\ Sn~l) is fibre homotopically trivially by Lemma 2. Let 
p£7Tn-2(C78fl), ^G7Tw_2(Gri_8g-i), and fG7rn_2(6:n-i) be the elements 
corresponding to (^ |5 n _ 1) , v8i and r ^ " " 1 ) respectively. Since 
v8 * {v\ Sn~l) is fibre homotopically trivial, 

(1) a*«(v8) + <rn-^l{v) = 0. 

But (v8 * 01) * 6**-l = %q * e^-l = r(Sn~l). So 

(2) **(?,) = f. 

Thus (1) and (2) show that f is an (n — &q — l)-fold suspension. Now 
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let J\ Trn-i(Gk)-*Tk+n-i(Sk) be defined in the usual way. Then the 
element 

[in-l, tn__i] = / ( f ) G 7T2n-3('5,n~1) 

must be an (n — 8g — l)-fold suspension. But according to [l , Corol­
lary 1.3], this element [in-i, t-n-i] is not even an (8g+l)-fold suspen­
sion. Since 

n ~ Sq - 1 ^ &q + 1 

for q>\, this gives a contradiction, and completes the proof. 
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