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1. Statements of results. Q3*™®, the Spin cobordism ring, has been
studied by many, e.g. Wall [9, p. 294], Milnor [5] and [6], Novikov
[7], and P. G. Anderson [3]. In this announcement we describe the
additive structure of Q$P®, much of the multiplicative structure,
characteristic numbers which determine Q®, and other properties.

We first state some technical results. Let @ denote the mod 2 Steen-
rod algebra, and let Qo =S¢ and Q1=S¢®+Sq2S¢*. 1If a4, as, - - -, as
€@, G(ay, az, - - -, a,) will denote the left ideal generated by {a,—}.
All cohomology groups will have Z, coefficients unless otherwise
stated. Let p: BO(n)—BO be the fibre space such that 7;(BO(n)) =0
for 1 <n and py: m:(BO{(n)) =~m;(BO) for i=n. The following theorem
is due to R. Stong [8].

THEOREM 1.1. There is an element o, & H*(BO(n)) such that the map
of @ into H*(BO(n)) given by a—aa, defines an isomorphism in dimen-
stons less than 2n between @/Q(Sq, Sq%) and H*(BO(n)) for n=0 (mod
8) and between @/G(Sq®) and H*(BO(n)) for n=2(mod 8).

Let :tEKO0(X)(X) be of filtration n [4], that is, £ is trivial on
the n —1 skeleton of X. Then there is a map f:: X—BO(n) such that
pfeis £ Let [£]={f¥(a.) } CH*(X) for all f; such that pfi=¢.

Let J=(j, - - -, j,) be a sequence of integers with j;>1 and £=0.
Let P;=P;, - - - P;; CH* (B Spin), where n(J)= > j; and P; is
the jth Pontrjagin class. In [2], certain classes i€ K0 BSO) were
defined which behave very much like Pontrjagin classes. Under the
map B Spin—BS0O, n' maps into a class which we also denote
m*&KO%B Spin). Let w9/ =7# - - - 7#*E€ KO0 B Spin). Our main re-
sult from KO-theory is the following theorem.

THEOREM 1.2. The filtration of w7/ is 4n(J) if n(J) is even, and is
An(J)—2 if n(J) is odd. Furthermore, if n(J) is even, there exists
X;EH"W (B Spin) such that X;E [17] and X;=P; mod Im QoQs,
and if n(J) is odd, there exists Y, & H*»)=2(B Spin) such that Y& [n7 ]
and Sq2Y;=P; mod Im Q,Q:.

1 The first named author was partially supported by the U.S.A.F. as a N.A.S.-
N.R.C. fellow and by the U. S. Army Research Office, the second named author by
the N.S.F. and the third named author by the N.S.F. and the U. S. Army Research
Office.
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Let M Spin(n) denote the universal Thom complex for Spin(#x)
bundles, and let M Spin denote the spectrum whose #th term is
M Spin(n). We define Hi{(M Spin) to be lim inv H+i(M Spin(n)).
Welet X;, Y, and P; & H*(M Spin) denote the elements correspond-
ing under the Thom isomorphism to X, ¥;, and P;& H*(B Spin).
Likewise, we let 7/&CIl(K0)°(M Spin) correspond under the KO-
Thom isomorphism to w7/ & KO0 B Spin).

Let X and Y be the graded vector spaces over Z, generated, re-
spectively, by {XJ}, n(J) even, and { Ys}, n(J) odd. The following
theorem gives the structure of H*(MSpin) as a module over Q.

THEOREM 1.3. There is a graded vector space Z and an Q-module
isomorphism

6:(@/a(S¢,Se?) @ X) & (G@/a(S¢®) ® V) & (@ ® Z) — H*(M Spin)
such that 0(X;)=X; and 0(Y;) =Y.

Let BO(n) denote the Q-spectrum whose Oth term is BO(n). If
n(J) is even let f;: M Spin—BO(4n(J)) be a map corresponding to
w7 such that fJ(auaw) = Xs and, if #(J) is odd, let fr: M Spin
—BO{4n(J) —2) be a map corresponding to 77 such that fJ(0un(j—2)
=¥,. Let {Z;} be a basis for Z and let f;: M Spin—K(Z, dim Z,) be
a map corresponding to Z; (K(Z,, n) is the spectrum whose Oth term
is K(Z,, n)). Let

F:MSpin— J[ BO@n(U))X J[ BO@4n(J) —2)

n(J) even n(J) odd

X HK(Zz, dim Z,)
be given by F=[]fsxIf.

COROLLARY 1.4. F induces an isomorphism on cohomology mod 2 and
hence an isomorphism mod @, on homotopy groups, where C; is the
class of finite groups of odd order.

We now give some of the geometric corollaries of the above theo-
rems. If [M]€Q¥®, x/(M)EKO"(pt) denotes the characteristic
number defined by 77 (see [2]).

COROLLARY 1.5. Let [M]€ Q™. Then [M]=0 if and only if =7 (M)
=0 for all J and all Stiefel-Whitney numbers of M vanish.

COROLLARY 1.6. Let [M|ER«. Then [M] contains a Spin manifold
if and only if all Stiefel-Whitney numbers of M involving W1 and W,
vanish.



258 D. W. ANDERSON, E. H. BROWN, JR., AND F. P. PETERSON [March

THEOREM 1.7. Let Ru=Im(QPP—Ny)/Im (squares in Qu—Nx).
Then §Rn=0, n§28, n*=24. 9’?24—_-22:9%29, m30=§R31=0, m32=Zz+Z2,
Rsz=2Zs, Ras=2Z2, Ras=0, Ras =23, Rer=Z2+Zs, Ras=0, Rag =22+ 2,
Ruo=Zs+ 2o+ 22422+ 2y, Ra=2Zs+42Zs+2Z:, Ree=2Z:+2Z:+2Z;, Ras
=Zz+Z2, m44=Z2+Zz+ZQ. (Compare [5] and [3])

The authors would like to thank Charles Sims who programmed
the hard part of the above computation on an IBM 7094. These were
done before we proved our main theorems and were helpful in check-
ing our conjectures; in particular they led to the correct version of
Theorem 1.3, and they gave us explicit Stiefel-Whitney numbers
which detect elements in R,, » <44.

Let #(J) be even. Then there are elements [MJ]EQE,‘,’("‘}‘) of infinite
order which are detected by {PJ} mod 2. If J=(j, - - -, jx) hasonly
even integers, we may take M;=QP#X - - - XQP# where QP"is the
quaterionic projective n space. Let #(J) be odd. Then there are ele-
ments [N;]EQPH _, of order two which are detected by { YJ}. Note
[N;]Xa=0, where 0#[S!]=a€Q"™ =2, by Corollary 1.5. Let
OW;=N;XS%, and let dV,=351X.S° Then d(W;X S =3(NsX V).
Let M;=W;XS"UN;X V, Then [M;]EQ¥R (the indeterminacy
in this construction is all multiples of two). Let rEQP®=Z be a
generator, and let wEQP® =Z @ Z be an element such that A(w) =1
(see [6]).

COROLLARY 1.8. A basis for QP®QQ is given by [M;]Xw* and
[M;]XT X, B=0,1, - - -.

CoROLLARY 1.9. Ker(QP®—Q,) is a vector space over Z, with a
basis given by [M;]Xw*Xai, k=0, 1, - - -, i=1, 2, n(J) even and
([M;1X7) /4 Xw* Xai, k=0, 1, - - -, i=1, 2, n(J) odd.

Let [M.]€QR;. correspond to Z.

COROLLARY 1.10. 4 basis for QBPP® Z, is given by

1) [M;]1Xw*Xai, k=0,1, - -,i=0, 1, 2, n(J) even,

(2) [Ms;]XrXw* k=0,1, - - -, n(J) even,

3) [Mf]v

4) [Ny], n(J) odd,

(5) [Ms]Xw*, k=0,1, - - -, n(J) odd, and

(6) (([Ms]X7)/4) Xw*Xai, k=0,1, - - -,3i=0, 1, 2, n(J) odd.

The rank of Z in dimension # can be computed inductively from
Theorem 1.3 and the information given in the following theorem.

TurorEM 1.11. (a) The Poincaré polynomial for H*(MSpin) is
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(A — )L,

n>3;n22"+1

(b) The Poincaré polynomial for @ is
II a-m

n=2"—1;r21

(c) The Poincaré polynomial for @/Q(Sqt, Sq?) is
II a—-¢7@Q - —)

n=2"—1;r23
(d) The Poincaré polynomial for @/@(Sgq?) is
I @ —m7 @ = (1 — )71+ ¢+ 2 + 18+ 19).

n=2"—1;r238

We remark that QP has no odd torsion (see [7]) and so the above
theorems determine Q™ as an additive group.

Finally, we comment that we can prove similar theorems for the
complex spinor group, Spin®=Spin X z,U(1). In this case a manifold
is cobordant to zero if and only if all its Stiefel-Whitney and Pon-
trjagin numbers are zero.

2. Techniques of proofs. Let @, be the subalgebra of @ generated
by S¢° Sq', and Sg?. Let ® be a graded @®@;-module.? Note that
Qo, Q1E @y and that QQo=0 and Q:Q1=0. We say that ® has iso-
morphic homologies if (Ker Q\Ker Q1)/(Im QyN\Im Q1) —H(®, Q)
is an isomorphism for 2=0, 1. The following theorem is a generaliza-
tion of a theorem due to Wall [9] and seems to be of interest in itself.

THEOREM 2.1. Let ® be an Qi-module with isomorphic homologies.
Then, as an Qy-module, ® is tsomorphic to a direct sum of four types of

Gi-modules, namely @i/ Gi(Sq, Sq?) =2Z,5, G1/GCi(Qo, 01), @1/ G1(Sq?),
and ®3.

In order to prove Theorem 1.2 we note that ® = H*(BSO) satisfies
Theorem 2.1, we use the knowledge of KO*(BSO) [1], and compute
in the so-called Atiyah-Hirzebruch spectral sequence for KO*(BSO).

Theorem 1.3 follows from the following algebraic theorem.

THEOREM 2.2. Let X and Y be graded vector spaces over Z,. Let ® be
a connected coalgebra over @ such that Ker(p:@—®) = @(Sq', Sq?), where
¢(a)=a(1). Given 0': (@/G(Sq!, S¢*)RX) ®(G/R(S¢®) ® Y)—® such
that 0: H((G/a(Sq!, S¢®) @X)®(@/a(S¢®) ®Y), Q.)—H(®, Q) s

* We assume that ®;=0 if <0 and that ®; is finitely generated.
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an isomorphism for i=0, 1. Define Z=®&/Im 0’ + G® and extend 0’ to
0: (@/a(Sq, Sq?) @X) D (G/R(S¢®) RY) ® (G QZ)—® in the obvious
way. Then 0 is an isomorphism.

The proofs of the corollaries to Theorem 1.3 are not difficult if one
applies the techniques developed in [2].
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