
WIENER AND INTEGRATION IN FUNCTION SPACES 

BY M. KAC 

1. Evolution of Mathematics is, by and large, a continuous process 
and its growth and progress seldom deviate greatly from the natural 
historical lines. I t is because of this that we tend, in retrospect, to 
admire most those developments which though born well outside it 
have grown to join and to enrich the mainstream of our science. 

I t was the great fortune and the great achievement of Norbert 
Wiener to initiate such a development when, in the early twenties, he 
introduced a measure, now justly bearing his name, in the space of 
continuous functions. 

2. Let us first review briefly some of the background. 
At about 1905, almost simultaneously, and quite independently of 

each other (in fact, using wholly different approaches) A. Einstein 
and M. Smoluchowski provided a theory of the peculiar erratic mo­
tion of small particles suspended in liquids first described in 1828 by 
the English botanist Brown. 

The theory can be summarized as follows: 
(a) For simplicity one confines one's attention to the displacement 

of the Brownian particle in some chosen direction and one can thus 
speak of the one-dimensional Brownian motion. 

(b) The motion is Markoffian and homogeneous in time; i.e. the 
probability of finding the particle at times tu ht • • • » tn (0<h<fa< 
• • • <tn) in the intervals (au j8i), • • • , (an, /3n) is given by the 

formula 

I P(xQ\xl;h)P(x1\x2;h-h) - • -

• • • P(xn-l \Xn\tn — *n-l)<&l ' ' ' ^Xn 

where P(x\ y; t) is the probability density of finding the particle at y 
at time t if it started at x a t t = 0. 

(c) For At—>0 one has asymptotically 

ƒ 00 

(x — x0)P(xo I x; At) dx ~ F(xo)Aty 

- C O 

ƒ 0 0 

(x - x0yP(x0 \x;At)dx~ 2D At, 
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< | A* |*> « o(At)9 k^3. 

Here F(x) is the outside force (e.g. gravity) acting on the particle 
when it is a t xf and D (the diffusion constant) is given by the formula 

2kT 
D « 

ƒ 
where T is the absolute temperature, ƒ the friction coefficient (in 
liquids e.g. ƒ is given by Stokes' formula ƒ = 6warj with a the radius of 
the spherical particle and TJ the viscosity coefficient) and k the Boltz-
mann constant. 

From (b) it follows at once that P(x\ y ; t) must satisfy the Smolu-
chowski equation (often called the Chapman-Kolmogoroff equation), 

(2.2) P ( * | y ; * + r) = f " P ( * | fcOP«| y; r) <% r > 0, 
• ' - O O 

and from this, using (c) one can derive (under appropriate smooth­
ness conditions on P) the diffusion equation 

dP d2P d 
= D + _ ( / 7 ( a ) p ) . 

dt dx2 dx 
We have, in addition, the initial condition 

P(x | y ; t) -» 3(y - a), as * -» 0, 

and the obvious restriction that 

P(x\ y;t) ^ 0. 

If e.g. ^(x) = 0 , i.e. we are dealing with a free Brownian particle, 
the unique solution of the problem is 

(2.3) P{*\y\t) = e x p f - - - ) 

and, in particular, the mean-square displacement at time t is given by 
the formula 

p 00 

<A2(/)> - I (y - s)2P(* | y ; /) dy « 2Z». 
J -00 

Thus if one observes a large number of free Brownian particles 
during the same time interval t and equates the empirically calculated 
mean-square derivation with the theoretically predicted value 2Dt, 
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one can get an estimate of D and hence determine (empirically and 
approximately) the Avogadro number. 

The successful determination of the Avogadro number from Brown-
ian motion experiments was one of the great triumphs of Physics in 
the early days of the century and it dealt the final blow to the op­
ponents of atomistic theories. 

By the time Smoluchowski died in 1917 the theory of Brownian 
motion was accepted, understood and, in many respects, finished. 

3. According to his own account, (see [177]),1 Wiener's concern 
with the problem of measure in function spaces began during his first 
term as an Instructor a t Massachusetts Institute of Technology and 
it was Professor I. Barnett, of the University of Cincinnati, who drew 
his attention to the interest of "generalization of the concept of proba­
bility to cover probabilities where the various occurrences being 
studied were not represented by points or dots in a plane or in space 
but by something of the nature of path curves in space" [177, p. 35]. 

I find it enormously surprising that, in 1919, when probability 
theory was not even thought of as a branch of pure mathematics, two 
young men should have contemplated problems of such degree of 
sophistication! 

Be as it may, Wiener became preoccupied with the subject of mea­
sure and integration in a space of curves and in the process he fa­
miliarized himself with the work of Gâteaux and especially with that 
of P. J. Daniell. At the same time he also read G. I. Taylor's pioneer­
ing paper on turbulence and he came to think of "the physical pos­
sibilities of a theory for averages over curves" [177, p. 37]. 

"The problem of turbulence," Wiener continues in his autobiog­
raphy [177, pp. 37, 38, 39] "was too complicated for immediate at­
tack,2 but there was a related problem which I found to be just right 
for the theoretical considerations of the field I had chosen for myself. 
This was the problem of the Brownian motion, and it was to provide 
the subject of my first major mathematical work. . . . Here I had a 
situation in which particles describe not only curves but statistical 
assemblages of curves. I t was an ideal proving ground for my ideas 
concerning the Lebesgue integral in a space of curves, and it had the 
abundantly physical texture of the work of Gibbs. I t was to this field 
tha t I had decided to apply the work tha t I had already done along 
the lines of integration theory. . . . " 

1 The bold-faced numbers in brackets refer to the numbered references in the 
Bibliography of Norbert Wiener. 

* It still is today! 
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"The Brownian motion was nothing new as an object of study by 
physicists. There were fundamental papers by Einstein and Smolu-
chowski tha t covered it, bu t whereas these papers concerned what 
was happening to any given particle a t a specific time, or long-time 
statistics of many particles, they did not concern themselves with the 
mathematical properties of the curve followed by a single particle. 

"Here the literature was very scant, but it did include a telling 
comment by the French physicist Perrin in his book Les Atomes, 
where he said in effect that the very irregular curves followed by par­
ticles in the Brownian motion, led one to think of the supposed con­
tinuous nondifferentiable curves of the mathematicians." 

4. Wiener presented his basic ideas in a series of papers published 
in the period from 1920 to 1923. He included an account of them in 
his famous Acta paper on generalized harmonic analysis and he de­
voted a chapter of his 1934 book with Paley to presenting again the 
subject to the mathematical community. 

The early papers were very difficult to read (as I know from per­
sonal experience, when as a student in Lwów I tried to read them 
with a depressing lack of success) and they fell on deaf ears. Only 
Paul Levy in France, who had himself been thinking along similar 
lines, fully appreciated their significance. 

The Acta paper and the book on the Fourier transform in the com­
plex domain were so full of new and exciting results and ideas, which 
were so unquestionably in the mainstream of analysis that the 
esoteric "random functions" were somehow overlooked. 

The original problem which Wiener posed himself was the follow­
ing: 

Can one introduce in the space of continuous functions x(t) (Org/ 
< oo, x(0) =0) a completely additive measure fx such that the measure 
of the set of paths which at times tu fe, • • • , tn (0Sh<t2< • • • <tn) 
pass through the "gates" (<*i, /3i), (ce2, 182), • • • , (an, j3n) is given by 
the Einstein-Smoluchowski formula (2.1) with 

(4.1) P(x\y,0 = e x p ( - ~ —J? 

In other words we require tha t ju be such that 

M{<*1 < *(tÙ < Pu * • * , «n < X(ln) < Pn} 

/

•Pi nfin 

I P ( 0 | * i ; O - P ( * i | * t ; * i - / i ) • • • 
• • • P(#n-1 j %n) tn — *n-l) d%\ ' • • dxn 
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with P given by (4*1). (Note that we set D~\ since the physical 
nature of the diffusion constant is of no relevance to this phase of the 
theory.) 

Wiener's solution of this problem is embodied in the following theo­
rem: 

If Gn, w = 0, 1, 2, • • • , is a sequence of independent, normally dis­
tributed random variables each having mean 0 and variance 1, then 
the series 

Go " "t;1 /2 V'2 sin ft 

(4.3) -_,+ £ E &(-) — -
TT1'2

 n~l k-2»-1 \ * / * 

converges uniformly in 0St<wt with probability 1, and denoting its 
sum by x{t) we have (4.2) if we interpret ju as probability y or equiva-
lently, as the product measure in the product 

R» ~ RXRXRX - -

with R the real line and the measure v in R defined by the formula 

I f / x2\ 

Thus to every continuous function x(t) on the interval 0 ^t <ir and 
such tha t x(0) = 0 there corresponds a point (Go, Gi, G2, • • • ) in R™ 
and conversely, to almost every point in R°° (in the sense of the 
product measure defined above) there corresponds a continuous func­
tion x(t) (x(0) =0) on (0, 7r). Clearly, the almost one-to-one mapping 

*(0 -> (Go, Gi, G2, • - • ) 

can be used to define a measure on the space of continuous functions 
and while the construction is limited to functions defined on the 
interval (0, ir) it can be easily modified to apply to functions defined 
on (0, co). 

Having constructed the measure Wiener then proved that almost 
every x(t) is nowhere differentiable and, even more strongly, that for 
every e > 0 almost every x(t) satisfies the Lipshitz condition with ex­
ponent | —e but almost none with exponent ^ + e . 

Thus has the remark of Perrin turned into a beautiful theorem! 
Let us recall now tha t a t about 1930 there appeared a series of 

papers by Paley and Zygmund in which, following the lines suggested 
by the earlier work of Steinhaus and Kolmogoroff and Khintchine, 
trigonometric series with "random" plus-minus signs 

X) ± cn cos nt 
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were extensively studied. Wiener's results appeared to belong natu­
rally to this circle of problems and indeed Paley and Zygmund joined 
forces with Wiener in [87] which, in a way, was a "merger" of the two 
lines of development. 

Because of this merger the original motivation was all but lost and 
what Wiener did took on the appearance of an elegant but special 
result concerning Fourier series with random coefficients. This sub­
ject, by the way, has shown remarkable vitality and there is a sig­
nificant revival of interest in it largely because of the work of the 
late Salem and that of Kahane, Katznelson, Malliavin and others. 

5. In the meantime measure theoretic foundations of probability 
theory became firmly established and toward the end of the nineteen-
thirties it became possible to introduce in a precise and rigorous way 
very general stochastic processes. This was done mainly by J. L. 
Doob and while his methods and approach were quite different from 
(and in some respects preferable to) those of Wiener the basic motiva­
tion was, in principle, quite close to Wiener's original one. There were 
however subtle differences and it is perhaps worthwhile to discuss 
them briefly especially since in the process we can bring out several 
other relevant points. 

Consider for example the problem of finding the probability tha t a 
free Brownian particle starting from x = 0 will remain to the left of 
x = a (a>0) for all times r not exceeding t. 

The problem would present no difficulty to a physicist who would, 
following Smoluchowski, argue as follows. 

If a large number of identical particles are started at x = 0 and 
watched en masse the macroscopic appearance will be that of classical 
diffusion ; consequently the desired probability is simply the propor­
tion of particles which up to time t did not pass the mark x — a. I t is 
thus sufficient to place an absorbing barrier a t x = a and calculate the 
fraction of the diffusing matter to the left of the absorbing barrier 
at time t. This is a classical problem and the answer, as is well known, 
can be obtained as follows: 

Let Qa(0\ x; t) be the fundamental solution of the diffusion equation 

dQ 1 d2Q 
(5.1) — = 

dt 2 dx2 

subject, in addition to the obvious initial condition 

(5.2) l imQ(0 |a ; ;0 « $(*), 
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also to the boundary condition 

(5.3) Q(0\a;t) = 0. 

The desired fraction of the diffusing material is then 

(5.4) q(a\t) = f Qa(0\x;t)dx. 

Since (for x^a) 

, 1 / x2\ 1 / (x - 2a)2\ 
QM x;t)=<^expr *) - c^expv—5—> 

we obtain 
2 /•• / #2\ 

(5.5) tf(a; 0 = I exp[ ) dt. 
V HK (2TT/) 1 / 2 J 0 \ 2// 

In Wiener's setting the problem is to find the measure of the set 
of those paths x(r) (tf(0) =0) which satisfy the condition 

(5.6) x(r) g o , 0 ^ T ^ /. 

The explicit representation (4.3) is useless for the purposes of actually 
computing the measure but since one knows tha t the paths are con­
tinuous, the set defined by (5.6) is measurable and moreover 

(5.7) /*{*(r) g a ;0 ^ r g /} = lim ix<x(— ) S a; k = 1, 2, • • •, n\ • 

Using (4.2) we get a t once that 

/*<#( — J ^ A; J = 1, 2, • • • , »> 

(5.8) - J° • J'p^Ol^j^P^il^; —V • • 

• • • Pi Xn~l | Xn\ jdXi - - ' dxn 

with 

P(# y ; 0 = exp ( J. 
V ' ^ (27T/)1'2 F \ It ) 

The existence of the limit in (5.7) is a simple consequence of rnea-
surability of the set (5.6) and there remains "only" the analytic prob­
lem of proving that the limit is indeed equal to q(a; t). 
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In Doob's approach one encounters an interesting difficulty at an 
earlier stage. Doob begins with the space of all real valued functions 
X(T) (subject to the trivial normalization x(0) =0) but he keeps (4.2) 
as the assignment of measures to sets of functions satisfying the con­
ditions 

(5.9) ax < x(h) < ft, a2 < x(h) < ft, • • • , a» < *(*») < ft. 

The Borel field generated by sets (5.9) turns out to be too small to 
make many of the interesting sets measurable. In particular, the set 
(5.6) is not measurable and neither, for that matter, is the set C of all 
continuous functions. Fortunately the outer measure of C turns out to 
be 1 (while the inner measure is 0) and because of this it is possible 
to concentrate the measure on it while maintaining (4.2). In this way 
one comes back to the Wiener measure but it now emerges as only 
one of an infinitude of possible measures consistent with (4.2). 

The relative delicacy of the situation tended to polarize the interest 
in stochastic processes along measure-theoretic rather than analytic 
lines. One might say that more attention was paid to defining mea­
sures like 

(5.10) X(T) g a; O g r g l 

than to ways and means of calculating them. 
But why fuss over measure-theoretic points when all the time the 

answer could be obtained (as shown above) by a simple application of 
classical diffusion theory? 

The answer lies somewhat deeper than one might think. 
I t can be verified by an elementary computation that (5.4) and 

(5.5) imply for x%a the equation 

(5.11) Qa(x] t) = P(0 | *; t) - f ( - J^llJA p(a | *; / - T) dr, 

or equivalently 

f Qa(x; t)dx+ f ( — - — J I P(a\x;t - r) dxdr 

(5.12) J l J o V ' T J J l 

= I P(0 | x\ t) dx, 

where JT is an interval to the left of x — a. 
Note now that 

dq(a;r) 

dr 
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is the (differential) probability that the Brownian path x(t) (x(0) = 0) 
will leave the half line xSa, for the first time, between r and r+dr, 
and consequently 

i ax 
ÔT 

dr I P(a | X] t — r) < 

is the probability that the path will end up in I a t time t having 
crossed x = afor the first time between r and r+dr. The second integral 
on the right hand side of (5.12) is thus the probability of ending up 
in I a t time I having left (— » , a) sometime before, and the first 
integral is clearly the probability of ending up in / at time t without 
having left tha t half line; together they add up to the probability of 
ending up in I at time t and equation (5.12) follows. 

But in arriving at this appealing interpretation I have identified 
leaving ( — <*>, a) and crossing x = a; this identification is justified only 
if the paths are continuous and we are again led to the question of con­
tinuity of paths! 

To appreciate this more fully let us imagine for a moment that the 
displacement of a particle was governed by the Cauchy density 

(5.13) p(X |y;< ) = l.^J 
T t2 + (x — y)2 

instead of the Gaussian density (4.1). 
This density also satisfies the Smoluchowski equation (2.2) and 

hence it is consistent to use formula (4.1) to assign measures to sets 
(5.9). 

Probability q(a; t) could still be defined by formulas (5.7) and (5.8) 
with P given by (5.13) and Qa(x; t) can be defined by the formula 

Ga(*;0=lim f f P (0 |* i ; — )p(*, |*»;—V • • 
n-+«> J_w J - o o V n/ \ nj 

(5.14) 
• • • P f Xn-l | X\ 1 dX\ • ' ' dxn-i 

again with P being the Cauchy density (5.13). The limits involved in 
(5.7) and (5.14) can be shown to exist and we might think that the 
analogy with the Gaussian case is so complete that (5.11) also holds. 
This however is not so ! 

The reason is that no longer can the measure be concentrated on the 
space of continuous functions and therefore "leaving (— oo, a)" and 
"crossing x~a" are not the same. In fact, because of the discontinu-
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ous nature of the paths "crossing # = a" is not even properly defined. 
Tha t the the sample paths of the Cauchy process (and other so-

called stable processes) cannot be continuous (i.e. assigning the mea­
sure (4.1) with P given by (5.13) to sets (5.9) makes it impossible to 
concentrate the measure on the space C of continuous functions3) 
was first noted by Paul Levy who has also shown that the sample 
paths, though by necessity discontinuous, can be made right (or left) 
continuous.4 This development helped to underscore the depth of 
Wiener's achievement although full awareness of capabilities and po­
tentialities of measure and integration theories in function spaces was 
rather slow in coming. 

6. During the war years there has been a substantial increase of 
interest in stochastic processes owing mainly to the need of analyzing 
noise phenomena in radar and related electronic systems. 

Here methods based on trigonometric series with random coeffi­
cients are especially appealing and natural. 

Wiener always had a strong interest in circuits and in other phases 
of electrical engineering and he continued almost to the end of his 
life to relate his early work on "random functions" to linear and non­
linear problems in circuit theory (see e.g. [ l9 l ] ) . 

But the strongest impact of Wiener's ideas on mathematics came 
from different directions. 

Starting in 1943, R. H. Cameron and W. T. Martin published a 
series of papers devoted to the calculation of Wiener integrals of a 
class of functionals. 

Their work culminated in proving that if pit) ^ 0 , 0^£^g 1, is con­
tinuous, then the Wiener integral of 

(6.1) exp (À ƒ' p(l)x*(t)dt) 

is equal, for sufficiently small X, to 

=0 } 

(6.2) I I 
£ S ( i - XX*)1'2 

where the X/s are the eigenvalues of the Sturm-Liouville problem 

(6.3) <*>" + — p(f)4> = 0, <K0) = 4>'(0) = 0. 
X 

8 In fact, in Doob's formulation described above, the outer measure of C is 0. 
4 Doob has greatly extended and systematized this work. 
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To derive this result Cameron and Martin developed an interesting 
theory of linear "changes of variable" in Wiener space in which linear 
integral equations played an important part. 

This was the first inkling that there are highly nontrivial connec­
tions between classical analysis and integration in function spaces. 

Almost at the same time Kakutani published a series of notes on 
connections between potential theory and Wiener measure. Of his 
results perhaps the most important was one identifying sets of capac­
ity zero with those which Brownian motion curves hit with probabil­
ity zero. This was a beginning of an extensive and fruitful develop­
ment which continues to this day. 

Then in 1948 there appeared in print a part of the 1942 doctoral 
dissertation of R. P. Feynman which dealt with a highly suggestive 
reformulation of the nonrelativistic quantum mechanics in terms of a 
certain integral over the space of paths. 

To review briefly what is a t stake let us restrict ourselves to the 
case of a particle of mass m moving along the x-axis in a force field 
generated by the potential V(x). 

The basic problem is to find the probability that if at time 0 the 
system is in the state described by the wave function #0, it will be in 
the state described by the wave function <j>\ at time /. This probabil­
ity is of the general form 

(6.4) | < 0 o | i ^ U i ) | 2 

where K is an appropriate operator. In our one-dimensional case, 

ƒ 00 r» 00 

I <J)Q(XO)K(X0 I x2; t)<t>i(x) dxodx 
—00 J—00 

where the "propagator" K(x0\ x; t) is obtained by solving the Schroe-
dinger equation 

% dK h2 d2K 
(6.6) + V(x)K 

i dt 2m dx2 

subject to the initial condition 

(6.7) K(xQ I x; I) - » ô(x - .To). 

What Feynman noted was that K can be formally written as a 
certain average over the set of all paths x(r) such that 
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(6.8) x(0) « XQ, x(t) = X 

of the quantity 

(6.9) exp (—$[*] ) 

where 

IT W ~ V(X(T))) dT 

is the classical action integral (the integrand is the Lagrangean of the 
system). Symbolically, 

(6.11) K(x0\x;t) = I expf— S[x] J d (path). 

Feynman proposed to define his "integral" (6.11) as the limit 

. C • • • r.exp [T A» Si (f (rir)) ~FW 11dxidXi • ' -^ 
(6.12) lim : 

J . . • * • J_„expLYAn S T v~~zrv J & f e • • *dXn-1 

where Aw = //w, and Leaving aside questions of convergence he 
then showed (formally) tha t if K is defined in this way it is indeed the 
correct propagator i.e. it satisfies (6.6) and (6.7). 

In 1947 Feynman and I were colleagues at Cornell and I attended 
a lecture of his at the Physics Colloquium at which he presented his 
formulation of quantum mechanics. At the time I happened to be 
interested in calculating various Wiener integrals (some suggested by 
discussions with W. T. Martin to whom I owe a great deal for getting 
me involved with the subject of integration in function spaces) and 
as I sat listening to Feynman it occurred to me that if instead of 
(6.6) one were to take the real heat equation 

dQ 1 d2Q 
(6.13) ~ f = J± V{x)Q 

dt 2 dx2 

(still subject to the initial condition Q(#0 |#, t)—>S(x — xo) as £—*0), 
then one could write its solution (Green's function) as an appropriate 
Wiener integral. 
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In fact, if V(x) is bounded from below and satisfies mild regularity 
conditions and if f(x) is integrable, then 

£ Q(x0\ x\t)f(x) dx 

(6.14) U~~ 

E < j e x p ( - f V(x0 + x(r)) dr\f(x0 + x(t))\ 

where £ { • • • } denotes the Wiener integral of the functional inside 
the braces. Q itself could be obtained either by an appropriate limit 
process or, equivalently, by considering conditional Wiener integrals5 

(expectations). 
The formula then is 

expf ~ 
Q(XQ\ x;t) = — 

(x — XQ)2\ 

It / 

(2TT/)1/2 

(6.15) 

E<exp ( — I V(XQ + x(r)) dr J | x(t) = x —x0> 

If one were to follow Feynman, one would try to define Q (in anal­
ogy with (6.12)) as the limit 

s: ••/>[-i!K2^)'-«s]—-. 
(6.16) hm C ' • • /-lexp [-* SI (r^)*]dxi • • • dx«-
but now, owing to the rigorously established existence of the Wiener 
measure,6 the existence of the limit is an immediate consequence of 
the measurability of the functional 

ƒ. V(xQ + *(T)) dr. 
o 

The fact tha t one can relate solutions of differential equations to 
function space integrals suggested many directions of further work. 
By now the literature on the subject is so vast and so varied that even 
a cursory review would be out of the question. In some instances ex-

6 This amounts to constructing a Wiener like measure in the set of continuous 
paths y(r) such that y(0) = 0 and y(t)~y. The simplest way to accomplish this is to 
map the ordinary Wiener measure in space of paths x(r) (x(0)=s0) by means of the 
mappingy(r) =*X(T)+(TIt) (y-x(t)), 0<r<t. 

6 More precisely, the Wiener like measure described in the preceding footnote. 
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treme generality helps hide the true origins in Wiener's measure and 
integration, and one is reminded of a statement attributed (apoc-
ryphally perhaps) to Hilbert that the art of doing mathematics 
consists in finding that special case which contains all the germs of 
generality. 

Feynman's ideas contributed greatly to gaining a larger audience 
for the work based on the Wiener integral and helped to take the 
"Wiener process" out of the somewhat narrow context of stochastic 
processes and into a much wider stream of analysis and physics. 

As an illustration let me describe a simple application of the Wiener 
integral to quantum statistical mechanics. 

The quantum-mechanical partition function is defined as the sum 

(6.17) Z=* £*-**•, 
n - 1 

where the En's are the eigenvalues of the Schroedinger operator 

h2 / d\ 
D* + V(x) [D BB— ) 

2m \ dx/ 
and 

1 
(6.18) /3 = 

kT 
with T the absolute temperature and k the Boltzmann constant. It 
can be easily related to the so called Bloch equation 

dP %% d2P 
(6.19) = V(x)P 

dp 2m d/32 

which, except for units, is of the "real" heat equation (6.13). It was, 
of course, well known that 

P(x\x;0)dx 
- 0 0 

where P(xo\ x; /S) is the Green's function of (6.19). But now, owing to 
(6.15), one could also write Z as a function space integral and in fact, 

m1'* 1 
Z = 

% (2*0)1/2 

(6.21) ' 

f E jexp ( - f V (x + —— *(r)j dr\ \ x(0) = o | dx. 
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To appreciate the advantage resulting from the use of function space 
integrals consider the classical limit &~»0. 

I t is now absolutely transparent what to expect. 
Since as h—»0 

£ jexpf - ƒ V (x + — x(ryj drj | x(fi) = 0> ->exp(-/3F(*)), 

we have formally 

lim (fiZ) = exp(-0F(*)) <fe 
JUO ( 2 7 T Ö ) 1 / 2 J „ 0 0 

= ƒ e x p ( - / î ( - ^ ) ^ J exp(-l3V(x))dx 

which is the classical partition function since 

P2 

~- + V(x) 
2m 

is the Hamiltonian of the system. 
The formal steps can be justified at the expense of some mild con­

ditions on V. Under appropriately stronger conditions on V (6.21) 
can be made a starting point (as was, in fact, done by Siegert and 
Yaglom) of a simple and straightforward derivation of the Kirkwood-
Wigner expansion of Z in powers of h. 

While on the subject of quantum mechanics one should at least 
mention another line of development of integration in function spaces. 
This has to do with an integration theory in Hilbert space and was 
dictated by certain needs of quantum theory of fields. Originated by 
Friedrichs and I. E. Segal this theory has, more recently, been shown 
to be closely related to and, in some respects, equivalent with Wie­
ner^ integration theory in the space of continuous functions. As one 
example of the interplay of the two "schools of thought" we may men­
tion e.g. L. Gross' Hilbert space version of the striking inversion 
formula of Cameron and Donsker which they discovered and proved 
in the context of Wiener integrals. 

Also the Cameron-Martin theory of linear changes of variable 
alluded to above assumes a particularly appealing form in Hilbert 
space setting. 
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7. Wiener did not directly participate in the evolution described 
above and in fact, the only reference to it in his autobiography [177] 
is the brief statement (pp. 179-180) that (<He (Martin) and Cameron 
did a good deal of work together along the lines of my Brownian mo­
tion papers, and they organized the field into a generally recognized 
branch of mathematical work." 

Like all highly creative and highly original people Wiener preferred 
thinking to reading and he did not take the trouble of familiarizing 
himself with the rapidly growing body of literature. But he had (and 
justly so!) a strong proprietory feeling toward his integral and he 
watched the work related to it closely enough to raise a few questions 
of priority. 

What is perhaps really surprising is that he was apparently un­
aware of the intimate connections between his measure and his own 
work on potential theory. 

It is now almost universally known that the generalized Wiener-
Perron capacitory potential of a closed set F (in Euclidean space of 
dimension 3 or higher) at a point p is the Wiener measure of the set 
of paths which originate from p and which at some time hit F. More­
over, Wiener's famous criterion for regularity of boundary points has 
a most appealing interpretation in terms of his measure.7 

The surprise is heightened if one recalls that Wiener's work on po­
tential theory was almost simultaneous with that on Brownian mo­
tion. 

But while Wiener did not take active part in most of the probabil­
istic and analytic developments which his early work inspired his 
interest in the preoccupation with random functions always remained 
strong. 

I have already mentioned his book [191 ]. 
One should also mention his (somewhat obscurely motivated) paper 

on Homogeneous Chaos [108] which, more recently, in the hands of 
Ito, Kakutani and Segal, has found interesting uses in the theory of 
unitary operators and in tensor algebras over Hubert spaces. 

Finally, there was the attempt to use randon functions to achieve 
a sort of "hidden variables" interpretation of quantum mechanical 
probabilities. This was first discussed in the paper [167] written 
jointly with Armand Siegel and in spite of a rather indifferent recep­
tion it received, Wiener had high hopes for this approach. It was 
taken up again in [209] which is probably his last published paper. 

7 A very complete discussion of this subject can be found in the recent book of Ito 
and McKean Diffusion processes and their sample paths, Springer-Verlag, New York. 
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8. In retrospect one can have nothing but admiration for the vision 
which Wiener had shown when, almost half a century ago, he had 
chosen Brownian motion as a subject of study from the point of view 
of the theory of integration. To have foreseen, at that time, that an 
impressive edifice could be erected in such an esoteric corner of mathe­
matics was a feat of intuition not easily equalled now or ever. 

It was Josiah Willard Gibbs, whom Wiener admired so much who 
said that "one of the principal objects of the theoretical research in 
any department of knowledge is to find the point of view from which 
the subject appears in its greatest simplicity." 

Integration in function spaces provided such a point of view over 
and over again in widely scattered areas of knowledge and it gave us 
not only a new way of looking at problems but actually a new way of 
thinking about them. 

The fate of all great work is to be subsumed; the more attention 
it attracts the greater the chances of becoming engulfed in a cascade 
of generalizations and extensions. 

This is especially true today because of a growing tendency to be­
lieve that the latest improvement supersedes all that preceded it 
and that a generalization constitutes a license to subsume. 

It is therefore well to repeat that Wiener's contribution to the sub­
ject of integration in function spaces will forever be the greatest be­
cause he had the idea first; and should anyone try to attribute it to 
luck let him be reminded that it is the deserving ones who are also 
lucky. 
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